精英家教网 > 高中数学 > 题目详情
2.如图所示,A、B、D、E四点在同一直线上,△ABC是边长为2的正三角形,DEFG是边长为2的正方形,在静止状态时,B点在D点的左侧,且$|{\overrightarrow{BD}}|=1$,让A点沿直线AB从左到右运动,当A点运动到E点时,运动结束.
(1)求在静止状态时,$\overrightarrow{BF}•\overrightarrow{CE}$的值;
(2)当A点运动时,求$\overrightarrow{BF}•\overrightarrow{CE}$的最小值.

分析 (1)在静止状态时,以D为原点建立如图所示直角坐标系,用坐标表示向量,再利用向量的数量积公式,即可求在静止状态时,$\overrightarrow{BF}•\overrightarrow{CE}$的值;
(2)当A点运动时,用坐标表示向量,再利用向量的数量积公式,即可求求$\overrightarrow{BF}•\overrightarrow{CE}$的最小值.

解答 解:(1)在静止状态时,以D为原点建立如图所示直角坐标系,依题意得
$\overrightarrow{BF}$=(3,2),$\overrightarrow{CE}$=(4,-$\sqrt{3}$),则
$\overrightarrow{BF}•\overrightarrow{CE}$=12-2$\sqrt{3}$…(6分)
(2)在运动状态时,仍然如上图建立直角坐标系,
设A(m,0),依题意得-3≤m≤2,
这时$\overrightarrow{BF}$=(-m,2),$\overrightarrow{CE}$=(1-m,-$\sqrt{3}$),…(10分)
则$\overrightarrow{BF}•\overrightarrow{CE}$=m2-m-2$\sqrt{3}$=(m-$\frac{1}{2}$)2-2$\sqrt{3}$-$\frac{1}{4}$
由-3≤m≤2知,当m=$\frac{1}{2}$时,$\overrightarrow{BF}•\overrightarrow{CE}$的值最小,且最小值为-2$\sqrt{3}$-$\frac{1}{4}$.…(15分)

点评 本题考查向量知识的运用,考查配方法,正确建立坐标系是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知双曲线${x^2}-\frac{y^2}{b^2}=1(b>0)$的一条渐近线过点(1,2),则b=2,其离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为迎接茶博会,要设计如图的一张矩形广告,该广告含有带下相等的左中右三个矩形栏目,这三栏的面积之比为60000cm2,四周空白的宽度为10cm,栏与栏之间的中缝空白的宽度为值5cm,怎样确定栏目的高与宽之比,能使整个矩形广告面积最小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=lg(x-1),则f(x+3)=(  )
A.lg(x+1)B.lg(x+2)C.lg(x+3)D.lg(x+4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=ax+b的图象经过A(-1,2)、B(3,6)两点.
(1)求a、b的值;
(2)如不等式f(x)>0的解集为A,f(x)≤5的解集为B,求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若a+2b=1(ab≠0),下列结论中错误的是(  )
A.ab的最大值为$\frac{1}{8}$B.$\frac{1}{ab}$的最小值为8
C.a2+ab+b2的最小值为$\frac{1}{4}$D.$\frac{1}{{{a^2}+ab+{b^2}}}$的最大值为4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.求直线2x-y-1=0被圆x2+y2-2y-1=0所截得的弦长$\frac{2\sqrt{30}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某小说共有三册,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\left\{\begin{array}{l}x+2{\;}^{\;}(x<0)\\{x^2}{\;}^{\;}{\;}^{\;}(0≤x<2)\\ \frac{1}{2}x{\;}^{\;}{\;}^{\;}(x≥2)\end{array}\right.$.
(1)求f(f(2))的值
(2)画出此函数的图象.
(3)若f(x)=2,求x的值.

查看答案和解析>>

同步练习册答案