精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)当时,若关于的方程有唯一实数解,试求实数的取值范围;

(3)若函数有两个极值点,且不等式恒成立,试求实数的取值范围.

【答案】(1);(2);(3).

【解析】

(1)对函数求导,求出的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得在点的切线方程;(2)原方程等价于,对求导得到函数单调区间,可知当时,;当时,,结合单调性可得到实数的取值范围;(3)对函数求导,可得恒成立恒成立,将替换,并构造函数,对求导可求得函数上的最小值,即可知道实数的取值范围.

(1)当时,有,

,

过点的切线方程为,即.

(2)当时,有,其定义域为

从而方程,可化为,令

,

上单调递增,在上单调递减,

又当时,;当时,,

关于的方程有唯一实数解,所以实数的取值范围是.

(3)的定义域为

,

又因为函数有两个极值点

有两个不等实数根

,且

从而,

由不等式恒成立恒成立,

,

时恒成立,所以函数上单调递减,,故实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,求函数的最大值;

2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;

3)当,方程有唯一实数解,求正数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是非空数集,且,设

1)若,求

2)是否存在实数,使得,且?若存在,请求出满足条件的实数;若不存在,请说明理由;

3)若,且是单调递增函数,求集合

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若a=1,求f(x)的极值;

(2)若存在x0[1,e],使得f(x0)<g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)在内有两极值点

1)求实数a的取值范围;

2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中.

1)讨论函数的极值;

2)对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家大约在公元222年赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的)类比“赵爽弦图”,赵爽弦图可类似地构造如图所示的图形,它是由个3全等的等边三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)若上恒成立,求实数的取值范围;

(2)证明:当时,

查看答案和解析>>

同步练习册答案