精英家教网 > 高中数学 > 题目详情

【题目】圆x2+y2﹣2x+4y﹣20=0截直线5x﹣12y+c=0的弦长为8,
(1)求c的值;
(2)求直线y=x﹣11上的点到圆上点的最短距离.

【答案】
(1)解:由x2+y2﹣2x+4y﹣20=0,得(x﹣1)2+(y+2)2=52

∴圆心坐标为(1,﹣2),半径r=5,

∵圆x2+y2﹣2x+4y﹣20=0截直线5x﹣12y+c=0的弦长为8,

∴圆心到直线5x﹣12y+c=0的距离为3,即 ,解得:c=10或c=﹣68


(2)解:由y=x﹣11,得x﹣y﹣11=0,

圆心(1,﹣2)到直线的距离d=

∴直线y=x﹣11上的点到圆上点的最短距离为


【解析】(1)化圆的一般方程为标准方程,求出圆心坐标和半径,利用垂径定理求得c值;(2)化直线方程为一般式,求出圆心到直线的距离,减去半径得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣ax﹣1(a∈R).
(1)若对任意实数x,f(x)<0恒成立,求实数a的取值范围;
(2)当a>0时,解关于x的不等式f(x)<2x﹣3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M过两点A(1,﹣1),B(﹣1,1),且圆心M在直线x+y﹣2=0上.
(1)求圆M的方程.
(2)设P是直线3x+4y+8=0上的动点,PC、PD是圆M的两条切线,C、D为切点,求四边形PCMD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆 和圆
(1)若直线l1过点A(2,0),且与圆C1相切,求直线l1的方程;
(2)若直线l2过点B(4,0),且被圆C2截得的弦长为 ,求直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率 ,过点A(0,﹣b)和B(a,0)的直线与原点的距离为
(1)求椭圆的方程;
(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x,3x吨.
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费34.7元,分别求甲、乙两户该月的用水量和水费.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 满足| |= =(4,2).
(1)若 ,求 的坐标;
(2)若 与5 +2 垂直,求 的夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半径为1,圆心角为 的圆弧 上有一点C.
(1)若C为圆弧AB的中点,点D在线段OA上运动,求| + |的最小值;
(2)若D,E分别为线段OA,OB的中点,当C在圆弧 上运动时,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求值:
(1) +log318﹣log36+
(2)A是△ABC的一个内角, ,求cosA﹣sinA.

查看答案和解析>>

同步练习册答案