精英家教网 > 高中数学 > 题目详情
1.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(Ⅰ)求图中a的值;
(Ⅱ)估计该次考试的平均分$\overline{x}$(同一组中的数据用该组的区间中点值代表);
(Ⅲ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
 晋级成功晋级失败合计
16  
  50
合计   
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.400.250.150.100.050.025
k0.7801.3232.0722.7063.8415.024

分析 (Ⅰ)由频率和为1,列方程求出a的值;
(Ⅱ)利用直方图中各小组中点乘以对应的频率,求和得平均分;
(Ⅲ)根据题意填写,计算观测值K2,对照临界值得出结论.

解答 解:(Ⅰ)由频率分布直方图各小长方形面积总和为1,得
(2a+0.020+0.030+0.040)×10=1,
解得a=0.005;
(Ⅱ)由频率分布直方图知各小组依次是
[50,60),[60,70),[70,80),[80,90),[90,100],
其中点分别为55,65,75,85,95,
对应的频率分别为0.05,0.30,0.40,0.20,0.05,
计算平均分为
$\overline{x}$=55×0.05+65×0.3+75×0.4+85×0.2+95×0.05=74(分);
(Ⅲ)由频率分布直方图值,晋级成功的频率为0.2+0.05=0.25,
故晋级成功的人数为100×0.25=25,
填写2×2列联表如下,

 晋级成功晋级失败合计
1634  50
 9 4150
合计25  75100 
假设晋级成功与性别无关,根据上表计算
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{10{0×(16×41-34×9)}^{2}}{25×75×50×50}$≈2.613>2.072,
所以有超过85%的把握认为“晋级成功”与性别有关.

点评 本题考查了频率分布直方图与独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,设△ABC的三个内角A,B,C对应的三条边分别为a,b,c,且角A,B,C成等差数列,a=2,线段AC的垂直平分线分别交线段AB,AC于D,E两点.
(1)若△BCD的面积为$\frac{{\sqrt{3}}}{3}$,求线段CD的长;
(2)若$CD=\sqrt{3}$,求角A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|(x-2)(x+3)<0},B={x|y=$\sqrt{\frac{1}{x+1}}$},则A∩(∁RB)=(  )
A.[-3,-1]B.(-3,-1]C.(-3,-1)D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(x+$\frac{1}{x}$+2)3的展开式中,x2的系数是6(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数的定义域为R,且满足下列三个条件:
①对任意的x1,x2∈[4,8],当x1<x2时,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0;
②f(x+4)=-f(x);
③y=f(x+4)是偶函数;
若a=f(6),b=f(11),c=f(2017),则a,b,c的大小关系正确的是(  )
A.a<b<cB.b<a<cC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若($\frac{1}{x}$+2x)6展开式的常数项为(  )
A.120B.160C.200D.240

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知sin($\frac{π}{3}$-α)=$\frac{1}{3}$(0<α<$\frac{π}{2}$),则sin($\frac{π}{6}$+α)=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知0<c<1,a>b>1,下列不等式成立的是(  )
A.ca>cbB.ac<bcC.$\frac{a}{a-c}>\frac{b}{b-c}$D.logac>logbc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x+4|+|x-a|.
(Ⅰ)当a<-2时,f(x)的最小值为1,求实数a的值.
(Ⅱ)当f(x)=|x+a+4|时,求x的取值范围.

查看答案和解析>>

同步练习册答案