精英家教网 > 高中数学 > 题目详情
9.以下判断正确的是(  )
A.命题“在锐角△ABC中,有sinA>cosB”为真命题
B.命题“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”
C.函数y=f(x)为R上可导函数,则f′(x0)=0是x0为函数f(x)极值点的充要条件
D.“b=0”是“f(x)=ax2+bx+c是偶函数”的充分不必要条件

分析 A.在锐角△ABC中,有$\frac{π}{2}>A>\frac{π}{2}-B$>0,可得sinA>$sin(\frac{π}{2}-B)$=cosB,即可判断出正误;
B.利用命题的否定定义即可判断出正误;
C.f′(x0)=0是x0为函数f(x)极值点的必要不充分条件,例如函数f(x)=x3,f′(0)=3x2|x=0=0,而函数f(x)在x=0处无极值,即可判断出正误;
D.“b=0”?“f(x)=ax2+bx+c是偶函数”,即可判断出正误.

解答 解:A.在锐角△ABC中,有$π>A+B>\frac{π}{2}$,∴$\frac{π}{2}>A>\frac{π}{2}-B$>0,∴sinA>$sin(\frac{π}{2}-B)$=cosB,因此为真命题;
B.“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1≥0”,因此不正确;
C.函数y=f(x)为R上可导函数,则f′(x0)=0是x0为函数f(x)极值点的必要不充分条件,例如函数f(x)=x3,f′(0)=3x2|x=0=0,而函数f(x)在x=0处无极值,因此不正确;
D.“b=0”?“f(x)=ax2+bx+c是偶函数”,因此不正确.
故选:A.

点评 本题查克拉简易逻辑的判定方法、函数的奇偶性、三角函数单调性、利用导数研究函数的极值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,圆锥的底面圆心为O,直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点,且AB=2PO.
(1)求证PO⊥AC;
(2)求异面直线PA与OE所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=lnx-ax+$\frac{1-a}{x}$-1.
(Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知直线与抛物线y2=2px(p>0)交于A、B两点,且OA⊥OB,OD⊥AB交AB于点D,点D的坐标为(2,1).
(1)求AB直线方程;
(2)求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知△ABC的三个内角A,B,C满足sin(180°-A)=$\sqrt{2}$cos(B-90°),$\sqrt{3}$cosA=-$\sqrt{2}$cos(180°+B),求角A,B,C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题为真命题;
②命题“?x∈N,x3>x2”的否定是“?x0∈N,使x${\;}_{0}^{3}$>x${\;}_{0}^{2}$”;
③“b=0”是“函数f(x)=ax2+bx+c为偶函数”的充要条件;
④“正四棱锥的底面是正方形”的逆命题为真命题;
⑤a>1是(a-2)(a-1)>0的必要不充分条件.
其中正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知c>0,设p:函数y=cx在R上递减;q:函数f(x)=x2-cx的最小值小于$-\frac{1}{16}$.如果“p或q”为真,且“p且q”为假,则实数c的取值范围为$(0,\frac{1}{2}]∪[1,+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.圆A:x2+y2+4x+2y+1=0与圆B:x2+y2-2x-6y+1=0的位置关系是外切.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xOy中,已知点A(-2,0),点B是圆C:(x-2)2+y2=4上的点,点M为AB的中点,若直线$l:y=kx-\sqrt{5}k$上存在点P,使得∠OPM=30°,则实数k的取值范围为[-2,2].

查看答案和解析>>

同步练习册答案