精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

时,求的极值;

若曲线在点处切线的斜率为3,且对任意都成立,求整数的最大值.

【答案】() 极小值()4.

【解析】

试题分析:()求出导数,令,求出根,讨论这些根的两边的符号,可得极值;()由导数的几何意义可求得参数,这样且对任意恒成立,可化为上恒成立,这样我们只要求函数的最小值即可,当然题目要求整数的最大值,故可求最小值的范围,为了讨论的正负,可能还要对(或其中部分式子)再求导,通过研究(或其中部分式子)的导数,一步步研究得出结论.

试题解析:() 时,

当x变化时,变化如下表:

X

0

+

递减

极小值

递增

时,有极小值.

()易求得 故问题化为上恒成立

,则

又令

上恒成立,

递增,

上有唯一零点,设为,则

时,;当时,

时,;当时,

上递增,在上递减,

,将代入有

所以所以整数b的最大值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,曲线 的参数方程为为参数).

(1)直线且与曲线相切,求直线的极坐标方程;

(2)点与点关于轴对称,求曲线上的点到点的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示:

(Ⅰ)求频率分布直方图中的值;

(Ⅱ)分别求出成绩落在中的学生人数;

(Ⅲ)从成绩在的学生中任选2人,求所选学生的成绩都落在中的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有5个形状大小完全相同的球,其中有2个红球,3个白球

1从袋中随机取两个球,求取出的两个球颜色不同的概率;

2从袋中随机取一个球,将球放回袋中,然后再从袋中随机取一个球,求两次取出的球中至少有一个红球的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地为制定初中七、八、九年级学生校服的生产计划,有关部门准备对180名初中男生的身高作调查.

(1)为了达到估计该地初中三个年级男生身高分布的目的,你认为采用怎样的调查方案比较合理?

(2)表中的数据是使用了某种调查方法获得的:七、八、九年级180名男生身高:

注:表中每组可含最低值,不含最高值.

根据表中的数据,请你给校服生产厂家指定一份生产计划思路.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,经调查,得到关于这两种产品的有关数据如下表:

资金

每台产品所需资金(百元)

月资金供应量

(百元)

空调机

洗衣机

成本

30

20

300

劳动力(工资)

5

10

110

每台产品利润

6

8

试问:怎样确定两种货物的月供应量,才能使总利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,三内角A,B,C的对边分别为a,b,c.

(1)若,求

(2)若,且为钝角,证明: ,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆内有一点过点作直线交圆两点

1经过圆心求直线的方程

2当弦被点平分时写出直线的方程

3当直线的倾斜角为求弦的长

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的反函数记为,已知函数

1设函数,试判断函数的极值点个数;

2时,,求实数的取值范围

查看答案和解析>>

同步练习册答案