精英家教网 > 高中数学 > 题目详情

【题目】两个非零向量 不共线.
(1)若 = + =2 +8 =3( ),求证:A、B、D三点共线;
(2)求实数k使k + 与2 +k 共线.

【答案】
(1)证明∵ = + + = + + = =6

∴A、B、D三点共线.


(2)解:∵k + 与2 +k 共线.

∴存在实数λ使得k + =λ(2 +k ).

∴(k﹣2λ) +(1﹣λk) =

,解得k=±

∴k=±


【解析】(1)由 = + + =6 ,即可A、B、D三点共线.(2)由于k + 与2 +k 共线.存在实数λ使得k + =λ(2 +k ).利用向量基本定理即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知{an}是一个等差数列,且a2=1,a5=﹣5.
(1)求{an}的通项an
(2)求{an}前n项和Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和是等差数列,且.

)求数列的通项公式;

)令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项不为零的数列的前项和为,且

1)若成等比数列,求实数的值;

2)若成等差数列,

①求数列的通项公式;

②在间插入个正数,共同组成公比为的等比数列,若不等式对任意的恒成立,求实数的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,侧面ABB1A1为菱形,∠DAB=∠DAA1
(Ⅰ)求证:A1B⊥BC;
(Ⅱ)若AD=AB=3BC,∠A1AB=60°,点D在平面ABB1A1上的射影恰为线段A1B的中点,求平面DCC1D1与平面ABB1A1所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)当x∈[ ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3+ax2+bx+ (a,b是实数),且f′(2)=0,f(﹣1)=0.
(1)求实数a,b的值;
(2)当x∈[﹣1,t]时,求f(x)的最大值g(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是根据某班50名同学在某次数学测验中的成绩(百分制)绘制的概率分布直方图,其中成绩分组区间为:[40,50),[50,60),…,[80,90),[90,100].

(1)求图中a的值;
(2)计算该班本次的数学测验成绩不低于80分的学生的人数;
(3)根据频率分布直方图,估计该班本次数学测验成绩的平均数与中位数(要求中位数的估计值精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

(Ⅰ)根据直方图估计这个开学季内市场需求量的平均数和众数;

(Ⅱ)将表示为的函数;

(Ⅲ)根据频率分布直方图估计利润不少于1350元的概率.

查看答案和解析>>

同步练习册答案