精英家教网 > 高中数学 > 题目详情
8.已知3是函数$f(x)=\left\{\begin{array}{l}{log_3}(x+t),x≥3\\{3^x},x<3\end{array}\right.$的一个零点,则f[f(6)]的值是(  )
A.4B.3C.2D.log34

分析 利用函数的零点求出t,然后由里及外逐步求解函数值即可.

解答 解:3是函数$f(x)=\left\{\begin{array}{l}{log_3}(x+t),x≥3\\{3^x},x<3\end{array}\right.$的一个零点,可得log3(3+t)=0,解得t=-2,
f(6)=log34∈(1,3),
f[f(6)]=${3}^{lo{g}_{3}4}$=4.
故选:A.

点评 本题考查函数的零点分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=(k-x)ex-x-3.
(1)当k=1时,求f(x)在(0,f(0))处的切线方程;
(2)若f(x)<0对任意x>0恒成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.各项均为正数的等比数列{an}满足a3、a5、a6成等差数列,则$\frac{{{a_3}+{a_5}}}{{{a_4}+{a_6}}}$=1或$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设F1、F2分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A($\sqrt{6}$,$\frac{2\sqrt{6}}{3}$)到F1、F2两点的距离之和等于6,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点K是(1)中所得椭圆上的动点,求线段F1K的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线3x+4y-3=0与直线3x+4y+7=0之间的距离是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若a>b>0,c>1,则(  )
A.logac>logbcB.logca>logcbC.ac<bcD.ca<cb

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+bx-lnx(a,b∈R).
(Ⅰ)当a=8,b=-6,求f(x)的零点的个数;
(Ⅱ)设a>0,且x=1是f(x)的极小值点,试比较lna与-2b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)求值:$\frac{{sin{{330}^0}.sin(-\frac{13}{3}π).sin{{270}^0}}}{{cos(-\frac{19}{6}π).cos{{690}^0}}}$
(2)已知角α终边上一点P(-4,3),求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若三棱锥P-ABC的侧棱长PA=PB=PC,则点P在底面的射影O是△ABC的外心.

查看答案和解析>>

同步练习册答案