精英家教网 > 高中数学 > 题目详情
11.若椭圆的焦距与短轴长相等,则此椭圆的离心率为(  )
A.$\frac{1}{5}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

分析 利用椭圆的简单性质列出关系式,求解离心率即可.

解答 解:椭圆的焦距与短轴长相等,
可得2c=2b,则a=$\sqrt{{c}^{2}+{c}^{2}}$=$\sqrt{2}c$,
可得e=$\frac{\sqrt{2}}{2}$.
故选:D.

点评 本题考查椭圆的简单性质,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若a=logπe,$b={2^{cos\frac{7π}{3}}}$,$c={log_3}sin\frac{17π}{6}$,则(  )
A.b>a>cB.b>c>aC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=alnx+$\frac{1}{2}$x2-ax(a为常数)有两个极值点.
(1)求实数a的取值范围;
(2)设f(x)的两个极值点分别为x1,x2,若不等式$\frac{f({x}_{1})+f({x}_{2})}{{x}_{1}+{x}_{2}}$<Ψ恒成立,求Ψ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α 是第三象限角,$cosα=-\frac{12}{13}$,则tanα=$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}中,a3=2,a7=1,若$\{\frac{1}{{{a_n}+1}}\}$为等差数列,则a19=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,且f(x)满足对任m,n∈[-1,1],有$\frac{f(m)+f(n)}{m+n}$>0.
(1)解不等式f(x+$\frac{1}{2}$)+f(x-1)<0;
(2)若f(x)≤t2-2at+1对所有x∈[-1,1]、a∈[-1,1]恒成立,求实数t的取值范围.
(3)若f(x)≤t2-2at+2对所有x∈[-1,1],t∈[-1,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y≥1\\ x+y≥1\\ 2x-y≤4\end{array}\right.$,则$z=\frac{{{y^2}+\frac{1}{3}xy+{x^2}}}{x^2}$的最大值与最小值的比值 为(  )
A.$\frac{12}{7}$B.$\frac{77}{75}$C.$\frac{95}{36}$D.$\frac{125}{77}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于函数f(x),若存在x0∈R,使f(x0)=x0,则称x0是f(x)的一个不动点,已知函数f(x)=ax2+(b+1)x+(b-1)(a≠0),
(1)当a=1,b=-2时,求函数f(x)的不动点;
(2)对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知三棱锥P-ABC,若PA,PB,PC两两垂直,且PA=2,PB=PC=1,则三棱锥P-ABC的外接球的表面积为6π.

查看答案和解析>>

同步练习册答案