精英家教网 > 高中数学 > 题目详情
将侧棱相互垂直的三棱锥称为“直角三棱锥”,三棱锥的侧面和底面分别叫直角三棱锥的“直角面和斜面”;过三棱锥顶点及斜面任两边中点的截面均称为斜面的“中面”.已知直角三角形具有性质:斜边长等于斜边的中线长的2倍.类比上述性质,直角三棱锥具有性质:
 
考点:类比推理
专题:推理和证明
分析:故对于“直角三棱锥”,类比直角三角形的性质,可得斜面的中面面积等于斜面面积的四分之一.
解答: 解:由于直角三角形具有以下性质:斜边的中线长等于斜边边长的一半,
故对于“直角三棱锥”,具有以下性质:斜面的中面面积等于斜面面积的四分之一.
故答案为:斜面的中面面积等于斜面面积的四分之一.
点评:本题主要考查的知识点是类比推理,由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,右焦点到直线l:x-y+4=0的距离为
5
2
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过直线l上的动点P作椭圆C的切线PM、PN,切点分别为M、N,连结MN.
(1)证明:直线MN恒过定点Q;
(2)证明:当MN∥l时,定点Q平分线段MN.

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品按行业生产标准分成8个等级,等级系数X依次为1,2,…,8,其中X≥5为标准A,X≥3为标准B,已知甲厂执行标准A生产该产品;乙厂执行标准B生产该产品,假定甲、乙两厂的产品都符合相应的执行标准.
(Ⅰ)已知甲厂产品的等级系数X1的概率分布列如表所示:
X1 5 6 7 8
P 0.4 a b 0.1
且X1的数学期望EX1=6,求a,b的值;
(Ⅱ)为分析乙厂产品,从该厂生产的产品中随机抽取10件,相应的等级系数组成一个样本,数据如下:
3   5   4   6   8   5   5   6   3   4,从这10件产品中随机抽取两件(不放回抽样),求这两件产品中符合标准A的产品数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(0,0),B(1,2)两点绕定点P顺时针方向旋转θ角后,分别到A′(4,4),B′(5,2)两点,则cosθ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有一段长为11m的木棍,要折成两端,每段不小于3m的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
25
+
y2
9
=1的左焦点为F,点P的坐标为(2,-1),在椭圆上存在一点Q,使|QF|+
4
5
|PQ|的值最小,此最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗骰子先后抛掷两次,观察向上的点数.则点数相同的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长方体ABCD-A1B1C1D1中,ABCD是边长为1的正方形,D1B与平面ABCD所成的角为45°,则棱AA1的长为
 
,二面角B-DD1-C的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若sinθ=
3
2
,θ∈R,则方程的解集为(  )
A、{θ|θ=
π
6
+2k,k∈Z}
B、{θ|θ=
π
3
+2k,k∈Z}
C、{θ|θ=
π
6
+2k或
6
+2kπ,k∈Z}
D、{θ|θ=
π
3
+2k或
3
+2kπ,k∈Z}

查看答案和解析>>

同步练习册答案