精英家教网 > 高中数学 > 题目详情
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种
产品受欢迎的概率分别为,且不同种产品是否受欢迎相互独立.记为公司向市场投放三种新型产品受欢迎的数量,其分布列为

(Ⅰ)求该公司至少有一种产品受欢迎的概率;
(Ⅱ)求的值;
(Ⅲ)求数学期望.
(1)(2)
(3)
第一问中,设事件表示“该公司第种产品受欢迎”,由题意知由于事件“该公司至少有一种产品受欢迎”与事件“”是对立的,所以该公司至少有一种产品受欢迎的概率是
第二问中,由题意知
,整理得,由,可得
第三问中,,进而利用期望公式得到结论。
解:设事件表示“该公司第种产品受欢迎”,由题意知 …………………………………………………………………………………………1分
(Ⅰ)由于事件“该公司至少有一种产品受欢迎”与事件“”是对立的,所以该公司至少有一种产品受欢迎的概率是………………………………………3分
(Ⅱ)由题意知
,整理得,由,可得.…………………7分
(Ⅲ)由题意知
,………………………………………………9分
……………………………………………………10分
因此…………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某种项目的射击比赛,开始时在距目标100m处射击,如果命中记3分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在150m处,这时命中记2分,且停止射击;若第二次仍未命中,还可以进行第三次射击,此时目标已在200m处,若第三次命中则记1分,并停止射击;若三次都未命中,则记0分,且比赛结束.已知射手甲在100m处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.
(1)求射手甲在这次射击比赛中命中目标的概率;
(2)求射手甲在这次射击比赛中得分的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某班有名同学,一次考试后的数学成绩服从正态分布,则理论上分到 分的人数是 (     ) 
A.32B.16C.8D.20

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
小明购买一种叫做“买必赢”的彩票,每注售价10元,中奖的概率为2%,如果每注奖的奖金为300元,那么小明购买一注彩票的期望收益是多少元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两人轮流投篮,每人每次投一票.约定甲先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ) 求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数的分布列与期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走①号公路堵车的概率为,不堵车的概率为;汽车走②号公路堵车的概率为,不堵车的概率为.由于客观原因甲、乙两辆汽车走①号公路,丙汽车走②号公路,且三辆车是否堵车相互之间没有影响.
(Ⅰ)若三辆汽车中恰有一辆汽车被堵的概率为,求汽车走公路②堵车的概率;
(Ⅱ)在(Ⅰ)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对某班级50名同学一年来参加社会实践的次数进行的调查统计,得到如下频率分布表:
参加次数
0
1
2
3
人数
0.1
0.2
0.4
0.3
根据上表信息解答以下问题:
(1)从该班级任选两名同学,用η表示这两人参加社会实践次数之和,记“函数在区间内有零点”的事件为,求发生的概率
(2)从该班级任选两名同学,用ξ表示这两人参加社会实践次数之差的绝对值,求随机变量ξ的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二项分布满足X~B(3,),则(X=2)=   ▲   .(用分数表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果数据x1,x2,x3,…,xn的平均数为 ,方差为62,则数据3x1+5,3x2+5,…,3xn+5的平均数和方差分别是(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案