精英家教网 > 高中数学 > 题目详情
9.若数列{an}的前n项和记为Sn,并满足${a_n}=\left\{\begin{array}{l}2n-1,(n=2k-1,k∈{N^*})\\{2^n},(n=2k,k∈{N^*})\end{array}\right.$,则S7=(  )
A.30B.54C.100D.112

分析 ${a_n}=\left\{\begin{array}{l}2n-1,(n=2k-1,k∈{N^*})\\{2^n},(n=2k,k∈{N^*})\end{array}\right.$,可得S7=(a1+a3+a5+a7)+(a2+a4+a6),再利用等差数列与等比数列的求和公式即可得出.

解答 解:∵${a_n}=\left\{\begin{array}{l}2n-1,(n=2k-1,k∈{N^*})\\{2^n},(n=2k,k∈{N^*})\end{array}\right.$,
则S7=(a1+a3+a5+a7)+(a2+a4+a6
=1+3+5+7+22+24+26
=112.
故选:D.

点评 本题考查了等差数列与等比数列的求和公式、分组求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.一个几何体的三视图如图所示.已知这个几何体的体积为8,则h=(  )
A.1B.2C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如表数据是水温度x(℃)对黄酮延长性y(%)效应的试验结果,y是以延长度计算的,且对于给定的x,y为变量.
x(℃)300400500600700800
y(%)405055606770
(1)画出散点图;
(2)指出x,y是否线性相关;若线性相关,求y关于x的回归方程;
(3)估计水温度是1 000℃时,黄酮延长性的情况.(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)计算:${8^{\frac{2}{3}}}-\sqrt{{{(\sqrt{2}-1)}^2}}+{2^{\frac{1}{2}}}+{({\frac{1}{3}})^0}-lg100$.
(Ⅱ)已知a>0,且a-a-1=3,求值:a2+a-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,如果输入n=3,则输出的 S=(  )
A.$\frac{4}{9}$B.$\frac{8}{9}$C.$\frac{3}{7}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“任意正实数a,函数f(x)=x2+ax在[0,+∞)上都是增函数”的否定是“存在正实数a,函数f(x)=x2+ax在[0,+∞)上不都是增函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=logax,y=ax,y=x+a(a>0,a≠1)在同一直角坐标系中的图象如图,正确的为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:“x>3”是“x2>9”的充要条件,命题q:“a2>b2”是“a>b”的充要条件,则(  )
A.p∨q为真B.p∧q为真C.p真q假D.p∨q为假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{(a-5)x+8,x≤2}\\{\frac{2a}{x},x>2}\end{array}\right.$是(-∞,+∞)上的减函数,则实数a的取值范围为(  )
A.(-∞,5)B.(0,2]C.(0,5)D.[2,5)

查看答案和解析>>

同步练习册答案