精英家教网 > 高中数学 > 题目详情
若x∈(0,1)则函数y=lnx+
1
lnx
≤-2.
 
(判断对错)
考点:函数的最值及其几何意义
专题:计算题,函数的性质及应用,不等式的解法及应用
分析:由题意可得lnx<0,从而可得-lnx>0;从而利用基本不等式可判断出(-lnx)+
1
-lnx
≥2,从而解得.
解答: 解:∵x∈(0,1),∴lnx<0,
∴-lnx>0;
而(-lnx)+
1
-lnx
≥2
(当且仅当x=
1
e
时,等号成立),
故lnx+
1
lnx
≤-2;
故答案为:对.
点评:本题考查了基本不等式在求最值中的应用,注意正负值的转换,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

试验:连续抛掷一粒般子(骸子每一面数字分别为1,2,3,4,5,6)两次,记向上数字依次为a,b,事件A:“函数f(x)=lg(x2+ax+b2)定义域为R”.事件B:“函数g(x)=(a-π)x是减函数(其中π是圆周率)”.
(1)分别写出事件A与事件B所含基本事件;
(2)求事件A+B与事件AB发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输入m=7,n=3,则输出的S值为(  )
A、7B、42C、210D、840

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
4
-
y2
b2
=1的右焦点为F2(3,0)则该双曲线的焦点到其渐近线的距离等于(  )
A、
5
B、4
2
C、3
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示程序框图,算法流程图的输出结果是(  )
A、0B、B-1C、-2D、-3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知将函数y=sinx的图象上的所有点的横坐标伸长到原来的3倍(纵坐标不变),再向左平移
π
4
个单位,可得到函数y=f(x)的图象,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本的平均重量为(  )
A、10B、11C、12D、13

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
6
+
y2
2
=1与双曲线
x2
3
-
y2
b2
=1有公共的焦点F1,F2,则双曲线的渐近线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC三内角A,B,C所对的边分别为a,b,c,重心为G(三角形中三边中线的交点),若2a
GA
+3b
GB
=3c
CG
,则cosB=
 

查看答案和解析>>

同步练习册答案