精英家教网 > 高中数学 > 题目详情

【题目】2018江西南康中学、于都中学上学期第四次联考椭圆上动点到两个焦点的距离之和为4,且到右焦点距离的最大值为

I)求椭圆的方程;

II)设点为椭圆的上顶点,若直线与椭圆交于两点不是上下顶点).试问:直线是否经过某一定点,若是,求出该定点的坐标;若不是,请说明理由;

III)在(II)的条件下,求面积的最大值.

【答案】I;(II)过定点;(III

【解析】试题分析:(1)由题意布列关于a,b的方程组,解之即可;(2)联立直线与椭圆方程消去y得到关于x的一元二次方程,然后借助韦达定理,将向量的数量积为零表示出来,得到方程,进而求出定点。(3) 第三问的面积则是将拆分成两个三角形面积之和,表达面积后,利用换元法简化表达式,再利用均值不等式求最值即可.

试题解析:

(1)由已知得:2a=4∴a=2, ,b=1, ∴椭圆C的方程为: .

(2)依题意可设直线k必存在),,将代入椭圆方程得

,∵点B为椭圆的上顶点,且,∴

(舍去),,∴直线l 必过定点.

(3)不难得到:

,则

(当,即时取等号).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?

)经过多次测试后,甲每次解答一道几何题所用的时间在57分钟,乙每次解答一道几何题所用的时间在68分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的正方形,侧棱底面,且侧棱的长是,点分别是的中点.

(Ⅰ)证明: 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x-1+ (a∈R,e为自然对数的底数).且曲线y=f(x)在点(1,f(1))处的切线平行于x轴.

(1)求a的值;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在轴上,离心率,且椭圆经过点,过椭圆的左焦点且不与坐标轴垂直的直线交椭圆两点.

1)求椭圆的方程;

2)设线段的垂直平分线与轴交于点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在多面体中,四边形是边长为的正方形, 为等腰梯形,且 .

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆与圆内切并且与圆外切,圆心的轨迹为曲线.

(Ⅰ)求的方程;

(Ⅱ)已知曲线轴交于两点,过动点的直线与交于 (不垂直轴),过作直线交于点且交轴于点,若构成以为顶点的等腰三角形,证明:直线 的斜率之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:

(Ⅰ)试估计平均收益率;

(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组的对应数据:

据此计算出的回归方程为.

(i)求参数的估计值;

(ii)若把回归方程当作的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题恒成立;命题方程表示双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案