精英家教网 > 高中数学 > 题目详情
已知关于x的不等式x2-ax+1≤0有解,求关于x的不等式ax+4>7-2x的解.
分析:依题意知,△=a2-4≥0,又由ax+4>7-2x?(a+2)x>3,分a+2>0或a+2=0或a+2<0三种情况,解出不等式的解即可.
解答:解:由于关于x的不等式x2-ax+1≤0有解,
则△=a2-4≥0,即a≥2或a≤-2
又由ax+4>7-2x等价于(a+2)x>3,
则当a≥2时,a+2>0,
所以不等式ax+4>7-2x的解为x>
3
a+2

当a=-2时,不等式无解
当a<-2时,a+2>0,
所以不等式ax+4>7-2x的解为x<
3
a+2
点评:本题重点考查学生分类讨论的思想,一元二次不等式的解法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

研究问题:“已知关于x的不等式ax2-bx+c>0,解集为(1,2),解关于x的不等式cx2-bx+a>0”有如下解法:
解:由cx2-bx+a>0且x≠0,所以
(c×2-bx+a)
x2
>0得a(
1
x
2-
b
x
+c>0,设
1
x
=y,得ay2-by+c>0,由已知得:1<y<2,即1<
1
x
<2,∴
1
2
<x<1所以不等式cx2-bx+a>0的解集是(
1
2
,1).
参考上述解法,解决如下问题:已知关于x的不等式
b
(x+a)
+
(x+c)
(x+d)
<0的解集是:(-3,-1)∪(2,4),则不等式
bx
(ax-1)
+
(cx-1)
(dx-1)
<0的解集是
(-
1
2
,-
1
4
)∪(
1
3
,1)
(-
1
2
,-
1
4
)∪(
1
3
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知关于x的不等式|x-3|+|x-4|<3a2-7a+4.
(1)当a=2时,解上述不等式;
(2)如果关于x的不等式|x-3|+|x-4|<23a2-7a+4的解集为空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)几何证明选讲:如图,CB是⊙O的直径,AP是⊙O的切线,A为切点,AP与CB的延长线交于点P,若PA=8,PB=4,求AC的长度.
(2)坐标系与参数方程:在极坐标系Ox中,已知曲线C1:ρcos(θ+
π
4
)
=
2
2
与曲线C2;ρ=1相交于A、B两点,求线段AB的长度.
(3)不等式选讲:解关于x的不等式|x-1|+a-2≤0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式x+
1x-a
≥7在x∈(a,+∞)
上恒成立,则实数a的最小值为
5
5

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省原名校高三下学期第二次联考文科数学试卷(解析版) 题型:解答题

已知关于x的不等式|x-3|+|x-4|< 3a2-7a+4.

(1)当a=2时,解上述不等式;

(2)如果关于x的不等式| x-3|+|x-4|< 23a27a+4的解集为空集,求实数a的取值范围.

 

查看答案和解析>>

同步练习册答案