精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是梯形,且,点是线段的中点,过的平面交平面,且,且.

1)求证:

2)求直线与平面所成角的余弦值.

【答案】1)证明见解析(2

【解析】

1)先证明四边形是平行四边形,可得,则可证明平面,再利用线面平行的性质定理证明

2)先证明两两垂直,则可建立如图所示的空间直角坐标系,求出,再求出平面的一个法向量,可得直线与平面所成角的正弦值,进一步求解余弦值.

1)证明:因为,所以四边形是平行四边形,所以

平面平面,所以平面平面

平面平面

所以

2)在中,因为

所以由正弦定理,即

所以,∴,∴在

所以

因为是等腰三角形,且,点是线段的中点,

中,中点,所以

又由已知,故平面

平面,所以

中,由,可知

易知四边形为平行四边形,所以

两两垂直

所以建立如图所示的空间直角坐标系

设平面的一个法向量为

,所以

,令,解得

所以为平面的一个法向量,

因为,设直线与平面所成的角为

故直线与平面所成角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉在所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律,去掉所有为1的项,依次构成2334645101056…,则此数列的前50项和为(

A.2025B.3052C.3053D.3049

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为,点M的极坐标为,若直线l过点P,且倾斜角为,圆CM为圆心,1为半径.

1)求直线l的参数方程和圆C的极坐标方程.

2)设直线l与圆C相交于AB两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司甲、乙两个班组分别试生产同一种规格的产品,已知此种产品的质量指标检测分数不小于70时,该产品为合格品,否则为次品,现随机抽取两个班组生产的此种产品各100件进行检测,其结果如下表:

质量指标检测分数

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

甲班组生产的产品件数

7

18

40

29

6

乙班组生产的产品件数

8

12

40

32

8

(1)根据表中数据,估计甲、乙两个班组生产该种产品各自的不合格率;

(2)根据以上数据,完成下面的2×2列联表,并判断是否有95%的把握认为该种产品的质量与生产产品的班组有关?

甲班组

乙班组

合计

合格品

次品

合计

(3)若按合格与不合格比例,从甲班组生产的产品中抽取4件产品,从乙班组生产的产品中抽取5件产品,记事件A:从上面4件甲班组生产的产品中随机抽取2件,且都是合格品;事件B:从上面5件乙班组生产的产品中随机抽取2件,一件是合格品,一件是次品,试估计这两个事件哪一种情况发生的可能性大.

附:

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数集合 ,其中为虚数单位,若复数,则对应的点在复平面内所形成图形的面积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线相切.

1)求圆的方程;

2)若直线与圆相交于AB两点,是否存在实数a,使得过点的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知表1和表2是某年部分日期的天安门广场升旗时刻表.

表1:某年部分日期的天安门广场升旗时刻表

日期

升旗时刻

日期

升旗时刻

日期

升旗时刻

日期

升旗时刻

1月1日

7:36

4月9日

5:46

7月9日

4:53

10月8日

6:17

1月21日

7:31

4月28日

5:19

7月27日

5:07

10月26日

6:36

2月10日

7:14

5月16日

4:59

8月14日

5:24

11月13日

6:56

3月2日

6:47

6月3日

4:47

9月2日

5:42

12月1日

7:16

3月22日

6:15

6月22日

4:46

9月20日

5:59

12月20日

7:31

表2:某年2月部分日期的天安门广场升旗时刻表

日期

升旗时刻

日期

升旗时刻

日期

升旗时刻

2月1日

7:23

2月11日

7:13

2月21日

6:59

2月3日

7:22

2月13日

7:11

2月23日

6:57

2月5日

7:20

2月15日

7:08

2月25日

6:55

2月7日

7:17

2月17日

7:05

2月27日

6:52

2月9日

7:15/p>

2月19日

7:02

2月28日

6:49

(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;

(2)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记为这两人中观看升旗的时刻早于7:00的人数,求的分布列和数学期望

(3)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为).记表2中所有升旗时刻对应数据的方差为,表1和表2中所有升旗时刻对应数据的方差为,判断的大小(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】多面体,,,,,,,在平面上的射影是线段的中点.

(1)求证:平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“开门大吉”是某电视台推出的游戏节目,选手面对1号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,在一次场外调查中,发现参赛选手多数分为两个年龄段: (单位:岁),其猜对歌曲名称与否的人数如图所示.

(Ⅰ)写出列联表;判断是否有的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(如表的临界值表供参考)

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

(Ⅱ)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中恰好有一人在岁之间的概率. 

(参考公式: ,其中

查看答案和解析>>

同步练习册答案