【题目】已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:
0 | 1 | 2 | 3 | |
0 | 0.7 | 1.6 | 3.3 |
为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;
(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.
【答案】(1)选择函数模型,函数解析式为;(2)以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元.
【解析】
(1)对题中所给的三个函数解析式进行分析,对应其性质,结合题中所给的条件,作出正确的选择,之后利用待定系数法求得解析式,得出结果;
(2)根据题意,列出函数解析式,之后应用配方法求得最值,得到结果.
(1)若选择函数模型,则该函数在上为单调减函数,
这与试验数据相矛盾,所以不选择该函数模型.
若选择函数模型,须,这与试验数据在时有意义矛盾,
所以不选择该函数模型.
从而只能选择函数模型,由试验数据得,
,即,解得
故所求函数解析式为:.
(2)设超级快艇在AB段的航行费用为y(万元),
则所需时间为(小时),其中,
结合(1)知,
所以当时,.
答:当该超级快艇以1百公里/小时航行时可使AB段的航行费用最少,且最少航行费用为2.1万元.
科目:高中数学 来源: 题型:
【题目】已知函数,.
(Ⅰ)若,解不等式;
(Ⅱ)设是函数的四个不同的零点,问是否存在实数,使得其中三个零点成等差数列?若存在,求出所有的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数且函数图象上点处的切线斜率为.
(1)试用含有的式子表示,并讨论的单调性;
(2)对于函数图象上的不同两点如果在函数图象上存在点使得点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.
(Ⅰ)求异面直线A1B与AC1所成角的余弦值;
(Ⅱ)求二面角B﹣A1D﹣A的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.
(Ⅰ)证明:CE∥平面PAB;
(Ⅱ)求直线CE与平面PBC所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com