精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,若对任意的x1 , x2∈[1,2],且x1≠x2时,[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,则实数a的取值范围为(
A.[﹣ ]
B.[﹣ ]
C.[﹣ ]
D.[﹣e2 , e2]

【答案】B
【解析】解:由任意的x1,x2∈[1,2],且x1<x2,由[|f(x1)|﹣|f(x2)|](x1﹣x2)>0,

则函数y=丨f(x)丨单调递增,

当a≥0,f(x)在[1,2]上是增函数,则f(1)≥0,解得:0≤a≤

当a<0时,丨f(x)丨=f(x),令 =﹣

解得:x=ln

由对勾函数的单调递增区间为[ln ,+∞),

故ln ≤1,解得:﹣ ≤a<0,

综上可知:a的取值范围为[﹣ ],

故选B.

【考点精析】关于本题考查的利用导数研究函数的单调性,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若 是函数 图象的一条对称轴,当ω取最小正数时(
A.f(x)在 单调递减
B.f(x)在 单调递增
C.f(x)在 单调递减
D.f(x)在 单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx,1), =(2cosx,3),x∈R.
(1)当 时,求实数λ和tanx的值;
(2)设函数f(x)= ,求f(x)的最小正周期和单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如表:
表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是: ,则5288用算筹式可表示为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C: =1(a>b>0),称圆心在原点O,半径为 的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F( ,0),其短轴上的一个端点到F的距离为
(Ⅰ)求椭圆C的方程和其“准圆”方程;
(Ⅱ)点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1 , l2交“准圆”于点M,N.
(ⅰ)当点P为“准圆”与y轴正半轴的交点时,求直线l1 , l2的方程并证明l1⊥l2
(ⅱ)求证:线段MN的长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn , Sn=(2n﹣1)an , 且a1=1.
(1)求数列{an}的通项公式;
(2)若bn=nan , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四边形ABCD中,∠BAD=90°,∠BCD=120°,∠BAC=60°,AC=2,记∠ABC=θ.
(Ⅰ)求用含θ的代数式表示DC;
(Ⅱ)求△BCD面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的结果是8,则判断框内m的取值范围是(
A.(30,42]
B.(42,56]
C.(56,72]
D.(30,72)

查看答案和解析>>

同步练习册答案