精英家教网 > 高中数学 > 题目详情
3.分段函数f(x)=$\left\{\begin{array}{l}{2x+1\\;-2≤x≤0}\\{5x\\;0<x≤3}\end{array}\right.$,求
①函数的定义域,
②f(-1);
③f(1);
④f(0)

分析 直接求出函数的定义域,求解函数值即可.

解答 解:f(x)=$\left\{\begin{array}{l}{2x+1\\;-2≤x≤0}\\{5x\\;0<x≤3}\end{array}\right.$,
①函数的定义域为:{x|-2≤x≤3}.
②f(-1)=-2+1=-1.
③f(1)=5.
④f(0)=1.

点评 本题考查函数的定义域以及函数值的求法,分段函数的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知实数x、y、z满足x+y+z=0,x2+y2+z2=1,则x的最大值为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设连续函数f(x)的定义域为R,已知,若函数f(x)无零点,则f(x)>0或f(x)<0恒成立.
(1)用反证法证明:“若存在实数x0,使得f(f(x0))=x0,则至少存在一个实数a,使得f(a)=a”;
(2)若f(x)=ex-$\frac{1}{{e}^{x}}$+x2-2cosx-mx-2,有且仅有一个实数x0,使得f(f(x0))=x0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=$\frac{1}{2}$,$\frac{{a}_{n}+1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=0,n∈N*.求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.m取何值时,方程x2-(m+1)x+1=0有实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知?ABCD中,点E是对角线AC上靠近A的一个三等分点,设$\overrightarrow{EA}$=a,$\overrightarrow{EB}$=b,则向量$\overrightarrow{BC}$等于(  )
A.2a+bB.-$\frac{1}{2}$a-bC.$\frac{1}{2}$b-2aD.-b-2a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.sin22.5°•cos22.5°=$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,终边落在直线y=±x上的角α的集合是(  )
A.{α|α=k•360°+45°,k∈Z}B.{α|α=k•180°+45°,k∈Z}
C.{α|α=k•180°-45°,k∈Z}D.{α|α=k•90°+45°,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列各函数中,为指数函数的是(  )
A.y=(-1.3)xB.y=${(\frac{1}{2})}^{x}$C.y=x2D.y=x-1

查看答案和解析>>

同步练习册答案