精英家教网 > 高中数学 > 题目详情
4.已知集合M={x||x|≤2},N={x|x2+2x-3≤0},则M∩N=(  )
A.{x|-2≤x≤1}B.{x|1≤x<2}C.{x|-1≤x≤2}D.{x|-3≤x≤2}

分析 先分别求出集合M,N,由此利用交集定义能求出M∩N.

解答 解:∵集合M={x||x|≤2}={x|-2≤x≤2},
N={x|x2+2x-3≤0}={x|-3≤x≤1},
∴M∩N={x|-2≤x≤1}.
故选:A.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设x1,x2∈(0,$\frac{π}{2}$),且x1≠x2,下列不等式中成立的是(  )
①$\frac{1}{2}(sin{x}_{1}+sin{x}_{2})$>sin$\frac{{x}_{1}+{x}_{2}}{2}$;
②$\frac{1}{2}$(cosx1+cosx2)>cos$\frac{{x}_{1}+{x}_{2}}{2}$;
③$\frac{1}{2}$(tanx1+tanx2)>tan$\frac{{x}_{1}+{x}_{2}}{2}$;
④$\frac{1}{2}$($\frac{1}{tan{x}_{1}}$+$\frac{1}{tan{x}_{2}}$)>$\frac{1}{tan\frac{{x}_{1}+{x}_{2}}{2}}$.
A.①②B.③④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC的三边分别为a,b,c,a2=b2+c2-bc,则A等于(  )
A.30°B.60°C.75°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线a,b和平面α,则下列命题正确的是(  )
A.若a∥b,b∥α,则a∥αB.a⊥b,b⊥α,则a∥αC.若a∥b,b⊥α,则a⊥αD.若a⊥b,b∥α,则a⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,已知E,F分别是正方形ABCD的边AB、CD的中点,现将正方形沿EF折成60°的二面角,则异面角直线AE与BF所成角的余弦值是$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设实数x,y满足$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{y≥x}\end{array}\right.$,则x+2y的最小值为(  )
A.1.5B.2C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足a1=2,an+1=2(Sn+n+1)(n∈N*),令bn=an+1.
(Ⅰ)求证:{bn}是等比数列;
(Ⅱ)记数列{nbn}的前n项和为Tn,求Tn
(Ⅲ)求证:$\frac{1}{2}$-$\frac{1}{2×{3}^{n}}$<$\frac{1}{{a}_{1}}$$+\frac{1}{{a}_{2}}$$+\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$$<\frac{11}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=3sin(3x+$\frac{π}{4}$)的最小正周期为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知直线l1:(a+2)x+3y=5与直线l2:(a-1)x+2y=6平行,则a等于(  )
A.-1B.7C.$\frac{7}{5}$D.2

查看答案和解析>>

同步练习册答案