精英家教网 > 高中数学 > 题目详情
10.已知sinα+cosα=$\frac{4}{5}$,且$\frac{3π}{2}$<α<2π,计算:
(1)sinα-cosα;
(2)$\frac{1}{co{s}^{2}α}$-$\frac{1}{si{n}^{2}α}$.

分析 (1)由sinα+cosα=$\frac{4}{5}$,且$\frac{3π}{2}$<α<2π,可得sinα<0,cosα>0,利用平方关系可得2sinαcosα,因此sinα-cosα=-$\sqrt{(sinα+cosα)^{2}-4sinαcosα}$.
(2)化简$\frac{1}{co{s}^{2}α}$-$\frac{1}{si{n}^{2}α}$=$\frac{(sinα+cosα)(sinα-cosα)}{(sinαcosα)^{2}}$,把(1)中的sinα+cosα,sinαcosα,sinα-cosα代入即可得出.

解答 解:(1)由sinα+cosα=$\frac{4}{5}$,且$\frac{3π}{2}$<α<2π,
∴可得sinα<0,cosα>0,
∴sin2α+cos2α+2sinαcosα=$\frac{16}{25}$,
∴2sinαcosα=-$\frac{9}{25}$,
因此sinα-cosα=-$\sqrt{(sinα+cosα)^{2}-4sinαcosα}$=-$\sqrt{(\frac{4}{5})^{2}+2×\frac{9}{25}}$=-$\frac{\sqrt{34}}{5}$.
(2)$\frac{1}{co{s}^{2}α}$-$\frac{1}{si{n}^{2}α}$=$\frac{(sinα+cosα)(sinα-cosα)}{(sinαcosα)^{2}}$=$\frac{\frac{4}{5}×(-\frac{\sqrt{34}}{5})}{(-\frac{9}{50})^{2}}$=-$\frac{400\sqrt{34}}{81}$.

点评 本题考查了同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若全集U=R,集合M={x|x2>4},N={x|$\frac{3-x}{x+1}$>0},则M∩(∁UN)等于(  )
A.{x|x<-2}B.{x|x<-2}或x≥3}C.{x|x≥32}D.{x|-2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}的公差d>0,其前n项和为Sn,若S3=12,且2a1,a2,1+a3成等比数列.
(1)求数列{an}的通项公式;
(2)记bn=$\frac{1}{{a}_{n}{a}_{n+1}}$(n∈N*),且数列{bn}的前n项和为Tn,证明:$\frac{1}{4}$≤Tn<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列关于空间向量的运算法则正确的是(  )
①$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{b}$+$\overrightarrow{a}$
②($\overrightarrow{a}$+$\overrightarrow{b}$)+$\overrightarrow{c}$=$\overrightarrow{a}$+($\overrightarrow{b}$+$\overrightarrow{c}$)
③(λ+μ)$\overrightarrow{a}$=λ$\overrightarrow{a}$+μ$\overrightarrow{a}$(λ,μ∈R)
④λ($\overrightarrow{a}$+$\overrightarrow{b}$)=λ$\overrightarrow{a}$+λ$\overrightarrow{b}$(λ∈R)
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在(1-2x)m的展开式中,第5项、第6项和第7项的二项式系数为等差数列,求展开式中的第2项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.二次函数y=ax2+bx+c(a>0)的图象是抛物线,其焦点到准线的距离是1,则a的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$\frac{{x}^{2}}{4}$+y2=1的左右焦点分别为F1,F2,P为椭圆上任意一点.
求(1)PF1,•PF2的最大值(最小值).
(2)${PF}_{1}^{2}{+PF}_{2}^{2}$的最小值.
(3)∠F1PF2的最大值.
(4)PF1的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知三棱锥S-ABC中,侧棱SA=SB=SC,又有∠ABC=90°,求证:平面ABC⊥平面ASC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an}满足an+1+an=2n-3,若a1=2,则a8-a4=4.

查看答案和解析>>

同步练习册答案