精英家教网 > 高中数学 > 题目详情

四棱锥P-ABCD的所有侧棱长都为数学公式,底面ABCD是边长为2的正方形,则CD与PA所成角的余弦值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:根据CD∥AB,∠PAB或其补角就是异面直线CD与PA所成的角,在△PAB中求出∠PAB的余弦值,即可得出CD与PA所成角的余弦值.
解答:∵正方形ABCD中,CD∥AB
∴∠PAB或其补角就是异面直线CD与PA所成的角
△PAB中,PA=PB=,AB=2
∴cos∠PAB===
即CD与PA所成角的余弦值为
故选A
点评:本题在正四棱锥中,求相对的棱所成角的余弦之值,着重考查了正四棱锥的性质和异面直线所成角求法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥P-ABCD的底面是边长为1的正方形,侧棱PA⊥底面ABCD,且PA=2,E是PA的中点.
(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)求证:PC∥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,侧面PBC内有BE⊥PC于E,且BE=
6
3
a,试在AB上找一点F,使EF∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是正方形,O是该正方形的中心,P是平面ABCD外一点,PO⊥底面ABCD,E是PC的中点.求证:
(1)PA∥平面BDE;
(2)平面EBD⊥平面PAC;
(3)若PA=AB=4,求四棱锥P-ABCD的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱锥P-ABCD的高为PO,若Q为CD中点,且
OQ
=
PQ
+x
PC
+y
PA
(x,y∈R)
则x+y=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知四棱锥P-ABCD的三视图如图所示,则这个四棱锥的体积为(  )
A、
1
3
B、1
C、
2
3
D、
4
3

查看答案和解析>>

同步练习册答案