精英家教网 > 高中数学 > 题目详情
(2013•海淀区一模)已知a>0,下列函数中,在区间(0,a)上一定是减函数的是(  )
分析:题目给出的函数分别是一次函数、二次函数,指数函数及对数函数,在a>0时,逐一分析各函数在(0,a)上的单调性即可得到正确答案.
解答:解:∵a>0,则函数f(x)=ax+b的斜率大于0,直线f(x)=ax+b的倾斜为锐角,函数f(x)=ax+b在定义域R上为增函数,不满足在区间(0,a)上一定是减函数;
对于函数f(x)=x2-2ax+1,图象是开口向上的抛物线,对称轴为x=a,所以该函数在区间(0,a)上一定是减函数;
对于函数f(x)=ax,当0<a<1时,该函数在R上为减函数,当a>1时,函数在R上为增函数;
对于函数f(x)=logax,当0<a<1时,函数在R上为减函数,当a>1时,函数在R上为增函数;
故满足a>0,在区间(0,a)上一定是减函数的是f(x)=x2-2ax+1.
故选B.
点评:本题考查了函数的单调性及证明,考查了基本初等函数性质,属基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•海淀区一模)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°,点N在线段PB上,且PN=
2

(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)在四棱锥P-ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又∠CAD=30°,PA=AB=4,点N在线段PB上,且
PN
NB
=
1
3

(Ⅰ)求证:BD⊥PC;
(Ⅱ)求证:MN∥平面PDC;
(Ⅲ)设平面PAB∩平面PCD=l,试问直线l是否与直线CD平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)函数f(x)=
13
x3-kx,其中实数k为常数.
(I) 当k=4时,求函数的单调区间;
(II) 若曲线y=f(x)与直线y=k只有一个交点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•海淀区一模)已知圆M:(x-
2
2+y2=
7
3
,若椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右顶点为圆M的圆心,离心率为
2
2

(I)求椭圆C的方程;
(II)已知直线l:y=kx,若直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点(其中点G在线段AB上),且|AG|=|BH|,求k的值.

查看答案和解析>>

同步练习册答案