精英家教网 > 高中数学 > 题目详情

已知函数f(x)=xlnx,g(x)=x3+mx2-nx(m,n为实数).
(1)若x=1是函数y=g(x)的一个极值点,求m与n的关系式;
(2)在(1)的条件下,求函数g(x)的单调递增区间;
(3)若关于x的不等式2f(x)≤g'(x)+1+n的解集为P,且(0,+∞)⊆P,求实数m的取值范围.

解:(1)g'(x)=3x2+2mx-n,
由题意得,∴n=2m+3(m≠-3).
(2)由(1)知:g'(x)=3x2+2mx-(2m+3)=(x-1)[3x+(2m+3)],
令g'(x)=0,得
①当,即m>-3时,由g'(x)>0得或x>1,
∴g(x)的单调递增区间是
②当,即m<-3时,由g'(x)>0得x<1或
∴g(x)的单调递增区间是
(3)由(0,+∞)⊆P得2f(x)≤g'(x)+1+n在x∈(0,+∞)上恒成立,
即:2xlnx≤3x2+2mx+1在x∈(0,+∞)上恒成立,
可得在x∈(0,+∞)上恒成立,


令h'(x)=0,得(舍),
∵当0<x<1时,h'(x)>0,h(x)在(0,1)上单调递增;
当x>1时,h'(x)<0,h(x)在(1,+∞)上单调递减,
∴当x=1时,h(x)取得最大值,h(x)max=-2,
∴m≥-2,即m的取值范围是[-2,+∞)
分析:(1)由函数极值的定义,先求函数g(x)=x3+mx2-nx的导函数,由可得m与n的关系式
(2)在(1)的条件下g'(x)=3x2+2mx-(2m+3)=(x-1)[3x+(2m+3)],解不等式g'(x)>0,即可得函数g(x)的单调递增区间,但需要比较根1与的大小,因此需讨论后得结果
(3)由(0,+∞)⊆P得2f(x)≤g'(x)+1+n在x∈(0,+∞)上恒成立,参变分离后可转化为在x∈(0,+∞)上恒成立,从而只需求的最大值即可,利用导数判断其单调性可得结果
点评:本题综合考查了导数在函数极值、单调性、最值中的应用,解题时要认真体会导数在研究函数性质方面的积极作用,规范解题,还要注意运算技巧和分类讨论
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案