精英家教网 > 高中数学 > 题目详情
已知实数x,y满足
y≥1
y≤2x-1
x+y≤m
,若目标函数z=x-y的最小值的取值范围是[-3,-2],则实数m的取值范围是(  )
分析:我们可以画出满足条件的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数m的不等式组,即可得到m的取值范围即可.
解答:解:画出x,y满足的可行域如下图:
可得直线y=2x-1与直线x+y=m的交点使目标函数z=x-y取得最小值,
y=2x-1
x+y=m

解得 x=
m+1
3
,y=
2m-1
3

代入z=x-y得
z=
m+1
3
-
2m-1
3
=
2-m
3

目标函数z=x-y的最小值的取值范围是[-3,-2],
有:-3≤
2-m
3
≤-2,⇒8≤m≤11.
则实数m的取值范围是:8≤m≤11.
故选C.
点评:如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x,y满足
y≥1
y≤2x-1
x+y≤8
,则目标函数z=x2+(y-3)2的最小值为
16
5
16
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)已知实数x,y满足
y-x≥1
x+y≤1
-2x+y≤2
,则当z=3x-y取得最小值时(x,y)=
(-1,0)
(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足y=x2-2x+2(-1≤x≤1),则
y+3
x+2
的最大值与最小值的和为
28
3
28
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≤1
y≥|x-1|
,则3x-y的最大值是
5
5

查看答案和解析>>

同步练习册答案