¶ÔÓÚʵÊýx£¬½«Âú×ã¡°0¡Üy£¼1ÇÒx-yΪÕûÊý¡±µÄʵÊýy³ÆΪʵÊýxµÄСÊý²¿·Ö£¬ÓüǺÅ{x}±íʾ£®ÀýÈç{1.2}=0.2£¬{-1.2}=0.8£¬{
8
7
}=
1
7
£®¶ÔÓÚʵÊýa£¬ÎÞÇîÊýÁÐ{an}Âú×ãÈçÏÂÌõ¼þ£ºa1={a}£¬an+1=
1
an
  £¬an¡Ù0
0£¬ an=0
  ÆäÖÐn=1£¬2£¬3£¬¡­£®
£¨1£©Èôa=
2
£¬Çóa2£¬a3 ²¢²ÂÏëÊýÁÐ{a}µÄͨÏʽ£¨²»ÐèÒªÖ¤Ã÷£©£»
£¨2£©µ±a£¾
1
4
ʱ£¬¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐan=a£¬Çó·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA£»
£¨3£©ÈôaÊÇÓÐÀíÊý£¬Éèa=
p
q
 £¨pÊÇÕûÊý£¬qÊÇÕýÕûÊý£¬p£¬q»¥ÖÊ£©£¬¶ÔÓÚ´óÓÚqµÄÈÎÒâÕýÕûÊýn£¬ÊÇ·ñ¶¼ÓÐan=0³ÉÁ¢£¬Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö£º£¨1£©ÓÉÌâÉèÖªa1={
2
}=
2
-1£¬a2={
1
a1
}={
1
2
-1
}={
2
+1}={
2
}=
2
-1£¬´Ó¶ø¿É²ÂÏëÊýÁÐ{a}µÄͨÏʽ£»
£¨2£©µ±
1
2
£¼a£¼1£¬¼´1£¼
1
a
£¼2ʱ£¬¿ÉÇóµÃa=
-1+
5
2
£¬Óɴ˽øÐзÖÀàÌÖÂÛ£¬ÄÜÇó³ö·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA£»
£¨3£©³ÉÁ¢£®Ö¤Ã÷£ºÓÉaÊÇÓÐÀíÊý£¬¿ÉÖª¶ÔÒ»ÇÐÕýÕûÊýn£¬anΪ0»òÕýÓÐÀíÊý£¬¿ÉÉèan=
pn
qn
£¬ÓÉ´ËÀûÓ÷ÖÀàÌÖÂÛ˼ÏëÄܹ»ÍƵ¼³öÊýÁÐ{am}ÖÐamÒÔ¼°ËüÖ®ºóµÄÏî¾ùΪ0£¬ËùÒÔ¶ÔÓÚ´óÓÚqµÄ×ÔÈ»Êýn£¬¶¼ÓÐan=0£®
½â´ð£º½â£º£¨1£©¡ßa1={
2
}=
2
-1£¬
a2={
1
a1
}={
1
2
-1
}={
2
+1}={
2
}=
2
-1£¬
ͬÀí¿ÉÇóa3=
2
-1£¬
ÓÚÊDzÂÏ룺an=
2
-1£®
£¨2£©µ±
1
2
£¼a£¼1£¬¼´1£¼
1
a
£¼2ʱ£¬a2={
1
a1
}={
1
a
}=
1
a
-1=a£¬
¡àa2+a-1=0£¬
½âµÃa=
-1+
5
2
»òa=
-1-
5
2
£¨ÉáÈ¥£©£»
µ±
1
3
£¼a¡Ü
1
2
£¬¼´2¡Ü
1
a
£¼3ʱ£¬a2={
1
a1
}={
1
a
}=
1
a
-2=a£¬
¡àa2+2a-1=0£¬
½âµÃa=
-2+
8
2
=
2
-1»òa=-
2
-1£¨ÉáÈ¥£©£»
µ±
1
4
£¼a¡Ü
1
3
£¬¼´3¡Ü
1
a
£¼4ʱ£¬a2={
1
a1
}={
1
a
}=
1
a
-3=a£¬
¡àa2+3a-1=0£¬
½âµÃa=
-3+
13
2
»òa=
-3-
13
2
£¨ÉáÈ¥£©£®
×ÛÉÏËùÊö£¬·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA={
-1+
5
2
£¬
2
-1£¬
-3+
13
2
}£®
£¨3£©ÓÉaÊÇÓÐÀíÊý¿ÉÖª£¬¶ÔÒ»ÇÐÕýÕûÊýn£¬anΪ0»òÕýÓÐÀíÊý£®
Éèan=
pn
qn
£¨pnÊǷǸºÕûÊý£¬qnÊÇÕýÕûÊýÇÒ
pn
qn
¼ÈÔ¼£©£®
¢ÙÓÉa1={
p
q
}=
p1
q1
µÃ£º0¡Üp1¡Üq£»
¢ÚÈôpn¡Ù0£¬Éèqn=¦Ápn+¦Â£¨0¡Ü¦Â£¼pn£¬¦Á£¬¦ÂΪ·Ç¸ºÕûÊý£©£¬
Ôò
qn
pn
=¦Á+
¦Â
pn
£¬¶øÓÉan=
pn
qn
£¬µÃ
1
an
=
qn
pn
£¬
¡àan+1={
1
an
}=
¦Â
pn
£¬
¡àpn+1=¦Â£¬qn+1=pn£¬
¡à0¡Üpn+1£¼pn£®
Èôpn=0£¬Ôòpn+1=0£¬
Èôa1¡¢a2¡¢a3¡¢¡­¡¢aq¾ù²»Îª0£¬ÔòÕâq¸öÕýÕûÊý»¥²»ÏàͬÇÒ¶¼Ð¡ÓÚq£¬µ«Ð¡ÓÚqµÄÕýÕûÊý¹²ÓÐq-1¸ö£¬Ã¬¶Ü£®
¹Êa1¡¢a2¡¢a3¡¢¡­¡¢aqÖÐÖÁÉÙÓÐÒ»¸öΪ0£¬¼´´æÔÚm£¨1¡Üm¡Üq£©Ê¹µÃam=0£®
´Ó¶ø{am}ÖÐam¼°ÒÔºóµÄÏî¾ùΪ0£¬ËùÒÔ¶Ô´óÓÚqµÄÈÎÒâÕýÕûÊýn£¬¶¼ÓÐan=0³ÉÁ¢£¬
µãÆÀ£º±¾Ì⿼²éÊýÁеĵÝÍÆ£¬¿¼²é¼¯ºÏµÄÇ󷨣¬¿¼²éan=0ÊÇ·ñ³ÉÁ¢µÄÅжÏÓëÖ¤Ã÷£®×ÛºÏÐÔÇ¿£¬¼ÆËãÁ¿´ó£¬ÄѶȽϸߣ¬¶ÔÊýѧ˼άÄÜÁ¦µÄÒªÇó½Ï¸ß£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ¼Ûת»¯Ë¼ÏëºÍ·ÖÀàÌÖÂÛ˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•·¿É½Çøһģ£©¶ÔÓÚʵÊýx£¬½«Âú×ã¡°0¡Üy£¼1ÇÒx-yΪÕûÊý¡±µÄʵÊýy³ÆΪʵÊýxµÄСÊý²¿·Ö£¬ÓüǺţ¼x£¾±íʾ£®Àý£¼1.2£¾=0.2£¬£¼-1.2£¾=0.8£¬£¼
8
7
£¾=
1
7
£®¶ÔÓÚʵÊýa£¬ÎÞÇîÊýÁÐ{an}Âú×ãÈçÏÂÌõ¼þ£ºa1=£¼a£¾£¬an+1=
£¼
1
an
£¾ an¡Ù0
0        an=0
£¬ÆäÖÐn=1£¬2£¬3£¬¡­£®
£¨¢ñ£©Èôa=
2
£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©µ±a£¾
1
4
ʱ£¬¶ÔÈÎÒâµÄn¡ÊN+£¬¶¼ÓÐan=a£¬Çó·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA£»
£¨¢ó£©ÈôaÊÇÓÐÀíÊý£¬Éèa=
p
q
 £¨pÊÇÕûÊý£¬qÊÇÕýÕûÊý£¬p£¬q»¥ÖÊ£©£¬¶ÔÓÚ´óÓÚqµÄÈÎÒâÕýÕûÊýn£¬ÊÇ·ñ¶¼ÓÐan=0³ÉÁ¢£¬Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÑîÆÖÇøһģ£©¶ÔÓÚʵÊýa£¬½«Âú×ã¡°0¡Üy£¼1ÇÒx-yΪÕûÊý¡±µÄʵÊýy³ÆΪʵÊýxµÄСÊý²¿·Ö£¬ÓüǺÅ||x||±íʾ£¬¶ÔÓÚʵÊýa£¬ÎÞÇîÊýÁÐ{an}Âú×ãÈçÏÂÌõ¼þ£ºa1=|a£¬an+1=
||
1
an
 ||£¬an¡Ù0
0£¬an=0
ÆäÖÐn=1£¬2£¬3£¬¡­
£¨1£©Èôa=
2
£¬ÇóÊýÁÐ{an}£»
£¨2£©µ±a£¾
1
4
ʱ£¬¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐan=a£¬Çó·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA£®
£¨3£©ÈôaÊÇÓÐÀíÊý£¬Éèa=
p
q
 £¨p ÊÇÕûÊý£¬qÊÇÕýÕûÊý£¬p¡¢q»¥ÖÊ£©£¬ÎʶÔÓÚ´óÓÚqµÄÈÎÒâÕýÕûÊýn£¬ÊÇ·ñ¶¼ÓÐan=0³ÉÁ¢£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚʵÊýx£¬½«Âú×ã¡°0¡Üy£¼1ÇÒx-yΪÕûÊý¡±µÄʵÊýy³ÆΪʵÊýxµÄСÊý²¿·Ö£¬ÓüǺţ¼x£¾±íʾ£®¶ÔÓÚʵÊýa£¬ÎÞÇîÊýÁÐ{an}Âú×ãÈçÏÂÌõ¼þ£º£¨ i £©a1=£¼a£¾£»£¨ii£©an+1=
£¼
1
an
£¾£¬(an¡Ù0)
0£¬(an=0)
£¬µ±a£¾
1
2
ʱ£¬¶ÔÈÎÒâµÄ×ÔÈ»Êýn¶¼ÓÐan=a£¬ÔòʵÊýa=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013ÄêÉϺ£ÊÐÑîÆÖÇø¸ß¿¼ÊýѧһģÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

¶ÔÓÚʵÊýa£¬½«Âú×ã¡°0¡Üy£¼1ÇÒx-yΪÕûÊý¡±µÄʵÊýy³ÆΪʵÊýxµÄСÊý²¿·Ö£¬ÓüǺÅ||x||±íʾ£¬¶ÔÓÚʵÊýa£¬ÎÞÇîÊýÁÐ{an}Âú×ãÈçÏÂÌõ¼þ£ºa1=|a£¬an+1=ÆäÖÐn=1£¬2£¬3£¬¡­
£¨1£©Èôa=£¬ÇóÊýÁÐ{an}£»
£¨2£©µ±aʱ£¬¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐan=a£¬Çó·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA£®
£¨3£©ÈôaÊÇÓÐÀíÊý£¬Éèa= £¨p ÊÇÕûÊý£¬qÊÇÕýÕûÊý£¬p¡¢q»¥ÖÊ£©£¬ÎʶÔÓÚ´óÓÚqµÄÈÎÒâÕýÕûÊýn£¬ÊÇ·ñ¶¼ÓÐan=0³ÉÁ¢£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸