精英家教网 > 高中数学 > 题目详情
20.已知方程$\frac{{x}^{2}}{5-k}$+$\frac{{y}^{2}}{k-1}$=1表示焦点在x轴上的椭圆,则k的取值范围是1<k<3.

分析 直接由题意可得5-k>k-1>0求得k的范围得答案.

解答 解:∵方程$\frac{{x}^{2}}{5-k}$+$\frac{{y}^{2}}{k-1}$=1表示焦点在x轴上的椭圆,
∴5-k>k-1>0,
∴1<k<3.
故答案为:1<k<3.

点评 本题考查椭圆的标准方程,考查了椭圆的简单性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在空间直角坐标系中,点(-2,1,4)关于y轴的对称点的坐标为(2,1,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.椭圆$\frac{x^2}{9}+\frac{y^2}{2}=1$的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则|PF2|=4;${S_{△P{F_1}{F_2}}}$的大小为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个几何体的三视图如图所示,该几何体外接球的表面积为(  )
A.B.$\frac{25}{2}π$C.12πD.$\frac{41}{4}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如果两个球的表面积之比为4:9,那么这两个球的体积之比为8:27.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(文)下列四个命题中真命题的序号是①③④.
①5≥4;②函数f(x)=x3+x2是增函数,且值域是R;③$\sqrt{2}$不是有理数;④方程x2-2=0的根是$\sqrt{2}$,或方程的根是$-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列说法中不正确的有①②③
①若存在x1,x2∈I,当x1<x2时,f (x1)<f (x2),则y=f(x)在I上是增函数;
②函数y=x2在R上是增函数;
③y=$\frac{1}{x}$的单调递减区间是(-∞,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,则a+b的值是$\frac{1}{3}$;f(a)=$\frac{1}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A、B分别是椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$的左右两个焦点,O为坐标原点,点P(-1,$\frac{\sqrt{2}}{2}$)在椭圆上,线段PB与y轴的交点M为线段PB的中点.
(1)求椭圆的标准方程;
(2)设C、D是椭圆上的两点,OC⊥OD,求三角形OCD面积的最小值.

查看答案和解析>>

同步练习册答案