【题目】如图,在△ABC中,AD⊥BC于D,下列条件:
①∠B+∠DAC=90°,
②∠B=∠DAC,
③,
④AB2=BD·BC.
其中一定能够判定△ABC是直角三角形的共有( )
A. 3个 B. 2个 C. 1个 D. 0个
【答案】A
【解析】
①不能.
∵AD⊥BC,∴∠B+∠BAD=90°.∵∠B+∠DAC=90°,∴∠BAD=∠DAC,
∴△ABD≌△ACD(ASA),∴AB=AC,∴△ABC是等腰三角形,
∴无法证明△ABC是直角三角形;
②能.
∵AD⊥BC,∴∠B+∠BAD=90°.
∵∠B=∠DAC,∴∠BAC=∠BAD+∠DAC=∠BAD+∠B=90°;
③能.∵CD:AD=AC:AB,∠ADB=∠CDA=90°,
∴Rt△ABD∽Rt△CAD,∴∠ABD=∠CAD,∠BAD=∠ACD.
∵∠ABD+∠BAD=90°,∴∠CAD+∠BAD=90°.∵∠BAC=∠CAD+∠BAD,
∴∠BAC=90°;
④能.
∵能说明△CBA∽△ABD,又∵△ABD是直角三角形,∴△ABC一定是直角三角形.
故选A.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程(为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为: .
(1)把直线的参数方程化为极坐标方程,把曲线的极坐标方程化为普通方程;
(2)求直线与曲线交点的极坐标(≥0,0≤).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(1)若花店一天购进枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝, )的函数解析式.
(2)花店记录了天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量 | |||||||
频数 |
假设花店在这天内每天购进枝玫瑰花,求这天的日利润(单位:元)的平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax+ +c是奇函数,且满足f(1)= ,f(2)= .
(1)求a,b,c的值;
(2)试判断函数f(x)在区间(0, )上的单调性并证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某公司生产某产品的年固定成本为100万元,每生产1千件需另投入27万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且.
⑴ 写出年利润(万元)关于年产量(千件)的函数解析式;
⑵ 当年产量为多少千件时,该公司在这一产品的生产中所获年利润最大?(注:年利润=年销售收入年总成本).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对某电子元件进行寿命追踪调查,情况如下.
寿命(h) | 100~200 | 200~300 | 300~400 | 400~500 | 500~600 |
个 数 | 20 | 30 | 80 | 40 | 30 |
(1)列出频率分布表;
(2)画出频率分布直方图;
(3)估计元件寿命在100~400h以内的在总体中占的比例.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cos2x+2 sinxcosx+a,且当 时,f(x)的最小值为2.
(1)求a的值,并求f(x)的单调增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的 ,再把所得图象向右平移 个单位,得到函数y=g(x),求方程g(x)=2在区间 上的所有根之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的左、右焦点分别为F1、F2 , 短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形.
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P.证明: 为定值.
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com