精英家教网 > 高中数学 > 题目详情
10.若复数z满足$z=\frac{3+4i}{1-2i}$(i为虚数单位),则$|{\overline{\;z\;}}|$=$\sqrt{5}$.

分析 利用复数的除法运算法则化简,然后求解复数的模.

解答 解:复数z满足$z=\frac{3+4i}{1-2i}$=$\frac{(3+4i)(1+2i)}{(1-2i)(1+2i)}$=$\frac{-5+10i}{5}$=-1+2i.
则|$\overline{z}$|=$\sqrt{({-1)}^{2}+{2}^{2}}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$;

点评 本题考查是的基本运算,复数的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如果$\overrightarrow{a}$,$\overrightarrow{b}$分别满足下列各式,试问$\overrightarrow{a}$,$\overrightarrow{b}$之间有什么关系?
(1)|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|;
(2)$\overrightarrow{a}$+$\overrightarrow{b}$=λ($\overrightarrow{a}$-$\overrightarrow{b}$);
(3)$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$=$\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$;
(4)|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|;
(5)|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$|-|$\overrightarrow{b}$|;
(6))|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$|+|$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=loga(x2-3x+2),g(x)=log2(2x2-5x+2)(a>0,且a≠1),若f(x)>g(x),求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若复数z满足$\frac{z\;}{1+i}={i^{2015}}+{i^{2016}}$(i为虚数单位),则复数z=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数$f(x)=\left\{\begin{array}{l}\;\;\;\;\;\;\;2{\;^x}-a\;,\;\;\;\;\;\;\;\;\;x≤1\;,\;\;\\({x-a})({x-3a})\;,\;\;\;\;x>1\end{array}\right.$恰有两个零点,则实数a的取值范围是$({\frac{1}{3},\;\;1}]∪({2,\;\;+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在报名的5名男生和3名女生中,选取5人参加数学竞赛,要求男、女生都有,则不同的选取方式的种数为55.(结果用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.要使$\frac{1}{2}$sinθ+$\frac{\sqrt{3}}{2}$cosθ=$\frac{m-6}{2-m}$有意义,则实数m的取值范围是(  )
A.(4,+∞)B.[4,+∞)C.[8,+∞)D.(8,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f(x)+f(1),若直线y=kx与函数y=f(x)的图象恰有11个不同的公共点,则实数k的取值范围为($2\sqrt{6}-4$,$4\sqrt{3}-6$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数$f(x)=ax-\frac{b}{x}$,曲线y=f(x)在点(1,f(1))处的切线方程为3x-y-4=0.
(Ⅰ) 求f(x)的解析式;
(Ⅱ) 证明:曲线f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值.

查看答案和解析>>

同步练习册答案