精英家教网 > 高中数学 > 题目详情

【题目】(题文)如图,长方形材料中,已知.点为材料内部一点,,且. 现要在长方形材料中裁剪出四边形材料,满足,点分别在边上.

(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;

(2)试确定点上的位置,使得四边形材料的面积最小,并求出其最小值.

【答案】(1)见解析;(2)当时,四边形材料的面积最小,最小值为.

【解析】分析:(1)通过直角三角形的边角关系,得出,进而得出四边形材料的面积的表达式,再结合已知尺寸条件,确定角的范围.

(2)根据正切的两角差公式和换元法,化简和整理函数表达式,最后由基本不等式,确定面积最小值及对应的点上的位置.

详解:解:(1)在直角中,因为

所以

所以

在直角中,因为

所以

所以

所以 .

(2)因为

,由,得

所以

当且仅当时,即时等号成立,

此时,

答:当时,四边形材料的面积最小,最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=xlnxx+1gx)=exaxaR

(Ⅰ)求fx)的最小值;

(Ⅱ)若gx≥1R上恒成立,求a的值;

(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥P ABC中,PA⊥平面ABC,Q是BC边上的一个动点,且直线PQ与面ABC所成角的最大值为则该三棱锥外接球的表面积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,空间几何体中,四边形是梯形,四边形是矩形,且平面平面 是线段上的动点.

(1)求证:

(2)试确定点的位置,使平面,并说明理由;

(3)在(2)的条件下,求空间几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为2的正方体中,的中点是P,过点作与截面平行的截面,则截面的面积为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为.

(1)求数列的通项公式;

(2)设数列满足:

对于任意,都有成立.

①求数列的通项公式;

②设数列,问:数列中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在定义域内有两个不同的极值点.

1)求实数的取值范围;

2)若有两个不同的极值点,且,若不等式恒成立.求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上存在极大值,求的取值范围;

2)若轴是曲线的一条切线,证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将直角三角形沿斜边上的高折成的二面角,已知直角边 ,那么下面说法正确的是( )

A. 平面平面

B. 四面体的体积是

C. 二面角的正切值是

D. 与平面所成角的正弦值是

查看答案和解析>>

同步练习册答案