【题目】解不等式: ≥2.
【答案】解:不等式移项得: ﹣2≥0, 变形得: ≤0,
即2(x﹣ )(x﹣6)(x﹣3)(x﹣5)≤0,且x≠3,x≠5,
根据题意画出图形,如图所示:
根据图形得: ≤x<3或5<x≤6,
则原不等式的解集为[ ,3)∪(5,6].
【解析】把不等式的右边移项到左边,通分后把分子分母都分解因式,得到的式子小于等于0,然后根据题意画出图形,在数轴上即可得到原不等式的解集.
【考点精析】根据题目的已知条件,利用解一元二次不等式的相关知识可以得到问题的答案,需要掌握求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边.
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中, 为坐标原点,曲线: (为参数),在以平面直角坐标系的原点为极点, 轴的正半轴为极轴,有相同单位长度的极坐标系中,直线: .
(Ⅰ)求曲线的普通方程和直线的直角坐标方程;
(Ⅱ)求与直线平行且与曲线相切的直线的直角坐标方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 =( sinx,m+cosx), =(cosx,﹣m+cosx),且f(x)=
(1)求函数f(x)的解析式;
(2)当x∈ 时,f(x)的最小值是﹣4,求此时函数f(x)的最大值,并求出相应的x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:
(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;
(2)轮胎的宽度在内,则称这个轮胎是标准轮胎.试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】原命题:“, 为两个实数,若,则, 中至少有一个不小于1”,下列说法错误的是( )
A. 逆命题为:若, 中至少有一个不小于1,则,为假命题
B. 否命题为:若,则, 都小于1,为假命题
C. 逆否命题为:若, 都小于1,则,为真命题
D. “”是“, 中至少有一个不小于1”的必要不充分条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为调查高一新生上学路程所需要的时间(单位:分钟),从高一年级新生中随机抽取100名新生按上学所需时间分组:第1组(0,10],第2组(10,20],第3组(20,30],第4组(30,40],第5组(40,50],得到的频率分布直方图如图所示.
(1)根据图中数据求a的值;
(2)若从第3,4,5组中用分层抽样的方法抽取6名新生参与交通安全问卷调查,应从第3,4,5组各抽取多少名新生?
(3)在(2)的条件下,该校决定从这6名新生中随机抽取2名新生参加交通安全宣传活动,求第4组至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程 = x+ ,其中 =﹣20, = ﹣
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com