精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD—A1B1C1D1中,O为AC与BD的交点,G为CC1的中点.求证:A1O⊥平面GBD.

证明:设=a,=b,=c,则a·b=0,b·c=0,a·c=0,而=+=??+(+)=c+(a+b),

=-=b-a,?

=+=(+)+CC1=(a+b)-c.?

·=(c+a+b)·(b-a)

=c(b-a)+(a+b)·(b-a)?

=c·b-c·a+(b2-a2)?

=[|b|2-|a|2]=0,?

·=(c+a+b)·(a+b-c)?

=(a+b)2+c(a+b)-c2

=(a2+b2)-c2

=[|a|2+|b|2]-|c|2=0.

∴A1O⊥BD,A1O⊥OG.

又∵BD∩OG=O,∴A1O⊥平面BDG.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案