精英家教网 > 高中数学 > 题目详情
设{an}是公比为正数的等比数列,若a3=4,a5=16,则数列{an}的前5项和为(  )
分析:由a3=4,a5=16,可求出公比,进而得到首项,再根据前n项和公式,即可求数列的前5项和.
解答:解:由于a3=4,a5=16,则q2=
a5
a3
=
16
4
=4

又由{an}是公比为正数的等比数列,则q=2.
又∵a3=4,∴a1=1,
∴数列{an}的前5项和S5=
1×(1-25)
1-2
=25-1
=31.
故答案选D.
点评:本题考查了等比数列的前n项和.要求前n项和,就要知道首项和公比.而已知条件是数列的两项,故需根据通项公式联立方程组,解出首项与公比即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}的首项为1,其前n项和为Sn,{bn}是公比为正整数的等比数列,其首项为3,前n项和为Tn.若a3+b3=17,T3-S3=12.
(1)求{an},{bn}的通项公式;
(2)求数列{an+
23
bn}的前n项和Mn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项积为Tn,已知对?n,m∈N+,当n>m时,总有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常数).
(1)求证:数列{an}是等比数列;
(2)设正整数k,m,n(k<m<n)成等差数列,试比较Tn•Tk和(Tm2的大小,并说明理由;
(3)探究:命题p:“对?n,m∈N+,当n>m时,总有
Tn
Tm
=Tn-mq(n-m)m
(q>0是常数)”是命题t:“数列{an}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:022

若干个能唯一确定一个数列的量称为该数列的基本量.设{an}是公比为q的无穷等比数列,下列{an}的四组量中,一定能成为该数列基本量的是第   

组.(写出所有符合要求的组号)   S1S2 a2S3 a1an qan。其中n为正整数, Sn{an}的前n项和.

 

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:022

若干个能唯一确定一个数列的量称为该数列的基本量.设{an}是公比为q的无穷等比数列,下列{an}的四组量中,一定能成为该数列基本量的是第   

组.(写出所有符合要求的组号)   S1S2 a2S3 a1an qan。其中n为正整数, Sn{an}的前n项和.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的前n项积为Tn,已知对?n,m∈N+,当n>m时,总有数学公式(q>0是常数).
(1)求证:数列{an}是等比数列;
(2)设正整数k,m,n(k<m<n)成等差数列,试比较Tn•Tk和(Tm2的大小,并说明理由;
(3)探究:命题p:“对?n,m∈N+,当n>m时,总有数学公式(q>0是常数)”是命题t:“数列{an}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.

查看答案和解析>>

同步练习册答案