精英家教网 > 高中数学 > 题目详情

【题目】下列结论中正确的个数是(

①已知函数是一次函数,若数列通项公式为,则该数列是等差数列;

②若直线上有两个不同的点到平面的距离相等,则

③在中,“”是“”的必要不充分条件;

④若,则的最大值为2.

A.1B.2C.3D.0

【答案】B

【解析】

根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可;

解:①已知函数是一次函数,若数列的通项公式为

可得为一次项系数),则该数列是等差数列,故正确;

②若直线上有两个不同的点到平面的距离相等,则可以相交或平行,故②错误;

③在中,,而余弦函数在区间上单调递减,故 “”可得“”,由“”可得“”,故“”是“”的充要条件,故③错误;

④若,则,所以,当且仅当时取等号,故④正确;

综上可得正确的有①④共2个;

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,判断并说明函数的零点个数.若函数所有零点均在区间内,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学的对称美在中国传统文化中多有体现,譬如如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的和谐美.如果能够将圆的周长和面积同时平分的函数称为这个圆的优美函数,下列说法错误的是(

A.对于任意一个圆,其优美函数有无数个

B.可以是某个圆的优美函数

C.正弦函数可以同时是无数个圆的优美函数

D.函数优美函数的充要条件为函数的图象是中心对称图形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin 3x-cos 3x+1的图象向左平移个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:

①它的图象关于直线x=对称;

②它的最小正周期为

③它的图象关于点(1)对称;

④它在[]上单调递增.

其中所有正确结论的编号是(

A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线Cy2=2px(p>0)的焦点为F,准线为lAB为过焦点F且垂直于x轴的抛物线C的弦,已知以AB为直径的圆经过点(-10).

1)求p的值及该圆的方程;

2)设Ml上任意一点,过点MC的切线,切点为N,证明:MFNF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·江苏高考)如图,在三棱锥ABCD中,ABADBCBD,平面ABD⊥平面BCD,点EF(EAD不重合)分别在棱ADBD上,且EFAD.

求证:(1)EF∥平面ABC

(2)ADAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数)

(Ⅰ) 设(其中的导数),求的极小值;

(Ⅱ) 若对,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系.若曲线的极坐标方程为点的极坐标为,在平面直角坐标系中直线经过点,且倾斜角为.

1)写出曲线的直角坐标方程以及点的直角坐标;

2)设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,平面PCDEAD的中点,ACBE相交于点O.

1)证明:平面ABCD.

2)求直线BC与平面PBD所成角的正弦值.

查看答案和解析>>

同步练习册答案