精英家教网 > 高中数学 > 题目详情

【题目】如图,已知侧棱垂直于底面的四棱柱中,

(1)若是线段上的点且满足,求证:平面平面

(2)求二面角的平面角的余弦值.

【答案】(1)见解析(2)

【解析】试题分析:

(1)利用题意建立空间直角坐标系,证得 平面.即可得平面平面

(2)由题意可知: .即二面角的平面角的余弦值为.

试题解析:

解:(1) 解法(一): ,

, (没有这一步扣一分)

为原点, 轴, 轴, 轴,建立空间直角坐标系.

的中点,连接.

平面, .

的中点, .

,.

, .

(证得也行)

相交于, ⊥平面.

在平面内, 平面⊥平面

(2) 解法一: (若第1问已经建系)

⊥平面 是平面的一个法向量.

,

设平面的法向量是,则

,得. 平面的法量.

.

由图可知二面角的平面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知直线的普通方程为,曲线的参数方程为为参数),设直线与曲线交于 两点.

(Ⅰ)求线段的长;

(Ⅱ)已知点在曲线上运动,当的面积最大时,求点的坐标及的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, . ,且平面 ,点上任意一点.

(1)求证:

(2)点在线段上运动(包括两端点),若平面与平面所成的锐二面角为60°,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆关于直线对称,圆心在第二象限,半径为

(Ⅰ)求圆的方程.

(Ⅱ)是否存在直线与圆相切,且在轴、轴上的截距相等?若存在,写出满足条件的直线条数(不要求过程);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.在(0, )内,sinx>cosx
B.函数y=2sin(x+ )的图象的一条对称轴是x= π
C.函数y= 的最大值为π
D.函数y=sin2x的图象可以由函数y=sin(2x﹣ )的图象向右平移 个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,a,b,c分别是角A,B,C的对边,且a=80,b=100,A= ,则此三角形是(
A.锐角三角形
B.直角三角形
C.钝角三角形
D.锐角或钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角△ABC的面积等于3 ,且AB=3,AC=4.
(1)求sin( +A)的值;
(2)求cos(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为为参数, ),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,圆的极坐标方程为.

(Ⅰ)讨论直线与圆的公共点个数;

(Ⅱ)过极点作直线的垂线,垂足为,求点的轨迹与圆相交所得弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是拋物线的焦点, 若点,

1)求的值;

2)若直线经过点且与交于(异于)两点, 证明: 直线与直线的斜率之积为常数.

查看答案和解析>>

同步练习册答案