精英家教网 > 高中数学 > 题目详情
某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1~50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
编号
性别
投篮成绩
2

90
7

60
12

75
17

80
22

83
27

85
32

75
37

80
42

70
47

60
甲抽取的样本数据
编号
性别
投篮成绩
1

95
8

85
10

85
20

70
23

70
28

80
33

60
35

65
43

70
48

60
乙抽取的样本数据
(Ⅰ)观察抽取的样本数据,若从男同学中抽取两名,求两名男同学中恰有一名非优秀的概率.
(Ⅱ)请你根据抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
 
优秀
非优秀
合计

 
 
 

 
 
 
合计
 
 
10
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:

0.15
0.10
0.05
0.010
0.005
0.001

2.072
2.706
3.841
6.635
7.879
10.828
(参考公式:,其中
(Ⅰ)=
(Ⅱ)有95%以上的把握认为投篮成绩与性别有关.
(Ⅲ)甲用的是系统抽样,乙用的是分层抽样. 采用分层抽样方法比系统抽样方法更优.

试题分析:(Ⅰ)首先明确“事件”记“两名同学中恰有一名不优秀”为事件A,乙抽取的样本数据中,男同学有4名优秀,记为a,b,c,d,2名不优秀,记为e,f .计算从男同学中抽取两名,总的基本事件有15个,利用列举法确定事件A包含的基本事件数为8,进一步得到=. (Ⅱ)设投篮成绩与性别无关,由乙抽取的样本数据,得列联表,利用“卡方公式”,计算的观测值并与临界值表比较,得到结论.(Ⅲ)对照系统抽样、分层抽样的定义.确定抽样方法,由(Ⅱ)的结论,并且从样本数据能看出投篮成绩与性别有明显差异,得到结论.
试题解析:(Ⅰ)记“两名同学中恰有一名不优秀”为事件A,乙抽取的样本数据中,男同学有4名优秀,记为a,b,c,d,2名不优秀,记为e,f .  1分
乙抽取的样本数据,若从男同学中抽取两名,则总的基本事件有15个, 2分
事件A包含的基本事件有,共8个基本事件,所以 =.  4分
(Ⅱ)设投篮成绩与性别无关,由乙抽取的样本数据,得列联表如下:
 
优秀
非优秀
合计

4
2
6

0
4
4
合计
4
6
10
    6分
的观测值4.4443.841,  8分
所以有95%以上的把握认为投篮成绩与性别有关. 9分
(Ⅲ)甲用的是系统抽样,乙用的是分层抽样. 10分
由(Ⅱ)的结论知,投篮成绩与性别有关,并且从样本数据能看出投篮成绩与性别有明显差异,因此采用分层抽样方法比系统抽样方法更优.  12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某班共有学生40人,将以此数学考试成绩(单位:分)绘制成频率分布直方图,如图所示.

(1)请根据图中所给的数据,求a的值;
(2)从成绩在[50,70)内的学生中随机选3名学生,求这3名学生的成绩都在[60,70)内的概率;
(3)为了了解学生这次考试的失分情况,从成绩在[50,70)内的学生中随机选取3人的成绩进行分析,用X表示所选学生成绩在[60,70)内的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了估计某校的某次数学考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在上,将这些成绩分成六段,…,后得到如图所示部分频率分布直方图.

(1)求抽出的60名学生中分数在内的人数;(5分)
(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校优秀人数.(5分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某中学为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下图的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于(x,y)的一组样本数据(1,-1),(2,-3),(3,5,-6),(5,-9),(6,-11),(7.5,-14),(9,-17),…,(29,-57),(30.5,-60)的散点图中,所有样本点均在直线上,则这组样本数据的样本相关系数为(   )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.

(1)如果X=8,求乙组同学植树棵数的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
(注:方差s2[(x1)2+(x2)2+…+(xn)2]),其中为x1,x2,…,xn的平均数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

公安部最新修订的《机动车驾驶证申领和使用的规定》于2013年1月1日起正式实施,新规实施后,获取驾照要经过三个科目的考试,先考科目一(理论一),科目一过关后才能再考科目二(桩考和路考),科目二过关后还要考科目三(理论二),只有三个科目都过关后才能拿到驾驶证,某驾校现有100名新学员,第一批参加的20人各科目通过的人数情况如下表:
参考人数
通过科目一人数
通过科目二人数
通过科目三人数
20
12
4
2
请你根据表中的数据
(1)估计该驾校这100名新学员有多少人一次性(不补考)获取驾驶证;
(2)第一批参加考试的20人中某一学员已经通过科目的一考试,求他能通过科目二却不能通过科目三的概率;
(3)该驾校为调动教官的工作积极性,规定若所教学员每通过一个科目的考试,则学校奖励教官100元,现从这20人中随机抽取1人,记为学校因为该学员而奖励教官的金额数,求的数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如表:
分组
频数












合计

(1)列出频率分布表,并画出频率分布直方图;
(2)估计纤度落在中的概率及纤度小于的概率是多少?
(3)从频率分布直方图估计出纤度的众数、中位数和平均数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一次射击训练,某小组的成绩只有环、环、环三种情况,且该小
组的平均成绩为环,设该小组成绩为环的有人,成绩为环、环的人
数情况见下表:

那么               

查看答案和解析>>

同步练习册答案