A. | 等边三角形 | B. | 腰长为a的等腰三角形 | ||
C. | 底边长为a的等腰三角形 | D. | 等腰直角三角形 |
分析 已知等式左边通分并利用同分母分式的加法法则计算,整理后根据b+c不为0得到关系式,分解因式后,利用两数相乘积为0,两因式中至少有一个为0得到a=b或a=c,即可确定出三角形形状.
解答 解:已知等式变形得:$\frac{ac+ab}{bc}=\frac{b+c}{b+c-a}$,即a(b+c)2-a2(b+c)=bc(b+c),
∵b+c≠0,∴a(b+c)-a2=bc,即ab+ac-a2-bc=0,
分解因式得:-a(a-b)+c(a-b)=0,即(a-b)(-a+c)=0,
可得a=b或a=c,
则△ABC一定为腰长为a的等腰三角形,
故选:B.
点评 此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | { x|-1<x<1} | B. | { x|-2<x<1} | C. | { x|-2<x<2} | D. | { x|0<x<1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com