精英家教网 > 高中数学 > 题目详情
19.设函数f(x)在(-∞,+∞)上有意义,对于给定的正数k,定义函数fk(x)=$\left\{\begin{array}{l}f(x),f(x)<k\\ k,f(x)≥k\end{array}\right.$,取k=3,f(x)=($\frac{k}{2}$)|x|,则fk(x)=$\frac{k}{2}$的零点有(  )
A.0个B.1个
C.2个D.不确定,随k的变化而变化

分析 先根据题中所给函数定义,求出函数函数fK(x)的解析式,从而得到一个分段函数,然后再利用指数函数的性质求出所求即可.

解答 解:函数fk(x)=$\left\{\begin{array}{l}{{3}^{x},0<x<1}\\{{3}^{-x},-1<x<0}\\{3,x≥1或x≤-1}\end{array}\right.$的图象如图所示:
则fk(x)=$\frac{k}{2}=\frac{3}{2}$的零点就是fk(x)与y=$\frac{3}{2}$的交点,故交点有两个,即零点两个.
故选:C

点评 本题为新定义问题,正确理解新定义的含义是解决此类问题的关键.本题还考查含有绝对值的函数的性质问题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足不等式组$\left\{\begin{array}{l}{2x+y≤4}\\{x≥0}\\{y≥0}\end{array}\right.$,则$\frac{y+1}{x+1}$的最大值为(  )
A.3B.5C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一条光线从A(-$\frac{1}{2}$,0)处射到点B(0,1)后被y轴反射,则反射光线所在直线的方程为2x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设$\overrightarrow a=(2,-1),向量\overrightarrow b满足2\overrightarrow a-\overrightarrow b$=(-1,3),则$\overrightarrow b$等于(  )
A.(-5,5)B.(5,-5)C.(-3,3)D.(3,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设向量$\overrightarrow a$=(-1,3),$\overrightarrow b$=(2,x),若$\overrightarrow a$∥$\overrightarrow b$,则x=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某网店经营的一种商品进价是每件10元,根据一周的销售数据得出周销量P(件)与单价x(元)之间的关系如图折线所示,该网店与这种商品有关的周开支均为25元.
(I)根据周销量图写出周销量P(件)与单价x(元)之间的函数关系式;
(Ⅱ)写出周利润y(元)与单价x(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),且满足$\sqrt{3}$cos2$\frac{α}{2}$+$\sqrt{2}$sin2$\frac{β}{2}$=$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{2}$,sin(2017π-α)=$\sqrt{2}$cos($\frac{5}{2}$π-β),则α+β=$\frac{5}{12}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)是定义在R上的偶函数,在(-∞,0]上有单调性,且f(-2)<f(1),则下列不等式成立的是(  )
A.f(-1)<f(2)<f(3)B.f(2)<f(3)<f(-4)C.f(-2)<f(0)<f($\frac{1}{2}$)D.f(5)<f(-3)<f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.根据以往甲乙两人下象棋比赛中的记录,甲取胜的概率是0.5,和棋的概率是0.1,那么乙不输的概率是0.5.

查看答案和解析>>

同步练习册答案