精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为且满足:

(1)证明:是等比数列,并求数列的通项公式.

(2)设,若数列是等差数列,求实数的值;

(3)在(2)的条件下,设 记数列的前项和为,若对任意的存在实数,使得,求实数的最大值.

【答案】1 证明过程见解析 (2) (3)

【解析】

(1)由,再得出,两式作差,得出,再分奇数项,偶数项分别求通项公式即可得解;

(2)由等差数列的等差中项可得恒成立,可得,解得;

(3)由已知有,由裂项求和法求数列前项和得,由分离变量最值法可得,运算即可得解.

解:(1)因为,①

所以,②

②-①得:

由易得,即

即数列的奇数项是以为首项,4为公比的等比数列,偶数项是以为首项,4为公比的等比数列,

为奇数时,

为偶数时,

综上可得

是等比数列,且数列的通项公式.

(2)因为

所以

因为数列是等差数列,

所以恒成立,

即有恒成立,

解得;

(3)因为=

又对任意的存在实数,使得,

即对任意的 恒成立,

又当时,取最小值3,时,

,

故实数的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义为常数),若 .下述四个命题:

不存在极值;

②若函数 与函数 的图象有两个交点,则

③若 上是减函数,则实数 的取值范围是

④若 ,则在的图象上存在两点,使得在这两点处的切线互相垂直

A. ①③④B. ②③④C. ②③D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等比数列,a1=2,公比q>0,且a2,6,a3成等差数列.

(1)求数列{an}的通项公式;

(2)设bn=log2an,求使的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为践行“绿水青山就是金山银山”的发展理念,某城区对辖区内三类行业共200个单位的生态环境治理成效进行了考核评估,考评分数达到80分及其以上的单位被称为“星级”环保单位,未达到80分的单位被称为“非星级”环保单位.现通过分层抽样的方法获得了这三类行业的20个单位,其考评分数如下:

类行业:858277788387

类行业:766780857981

类行业:8789768675849082

(Ⅰ)计算该城区这三类行业中每类行业的单位个数;

(Ⅱ)若从抽取的类行业这6个单位中,再随机选取3个单位进行某项调查,求选出的这3个单位中既有“星级”环保单位,又有“非星级”环保单位的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长沙某超市计划按月订购一种冰激凌,每天进货量相同,进货成本为每桶5元,售价为每桶7元,未售出的冰激凌以每桶3元的价格当天全部处理完毕.根据往年销售经验,每天的需求量与当天最高气温(单位:)有关,如果最高气温不低于,需求量为600桶;如果最高气温(单位:)位于区间,需求量为400桶;如果最高气温低于,需求量为200桶.为了确定今年九月份的订购计划,统计了前三年九月份各天的最高气温数据,得下面的频数分布表:

最高气温(

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率.

1)求九月份这种冰激凌一天的需求量(单位:桶)的分布列;

2)设九月份一天销售这种冰激凌的利润为(单位:元),当九月份这种冰激凌一天的进货量(单位:桶)为多少时,的均值取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,命题p:函数内单调递增;q:函数仅在处有极值.

1)若命题q是真命题,求a的取值范围;

2)若命题是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

1)求的值;

2时,求的取值范围;

3)函数的性质通常指的是函数的定义域、值域、单调性、周期性、奇偶性等,请你探究函数其中的三个性质(直接写出结论即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,是函数图象上的任意两点,且角的终边经过点,,的最小值为

1)求函数的解析式;

2)若方程内有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,直线)与椭圆交于两点(点轴的上方).

1)若,求的面积;

2)是否存在实数使得以线段为直径的圆恰好经过坐标原点?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案