精英家教网 > 高中数学 > 题目详情
已知函数f(x)=kx3-4x2-8在区间[2,8]上是单调函数,求实数k的取值范围.
分析:先求导函数f'(x),函数f(x)=kx3-4x2-8在区间[2,8]上是单调函数转化成在[2,8]上f'(x)≥0或f'(x)≤0
恒成立,利用分离参数法分离出k,转化成恒成立问题,从而求出实数k的取值范围.
解答:解:∵f(x)=kx3-4x2-8
∴f'(x)=3kx2-8x
∵f(x)在[2,8]上单调
∴在[2,8]上f'(x)≥0或f'(x)≤0
若f'(x)≥0即3kx2-8x≥0成立,
k≥
8
3x

k≥
4
3

若f'(x)≤0即3kx2-8x≤0成立
k≤
8
3x

k≤
1
3

综上所示,k的取值范围为(-∞,
1
3
]∪[
4
3
,+∞)
点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,设t=logax+logxa.
(Ⅰ)当x∈(1,a)∪(a,+∞)时,将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值;
(Ⅱ)当k=4时,若对?x1∈(1,+∞),?x2∈[1,2],使f(x1)≤g(x2),试求实数b的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
k+1x
(k<0),求使得f(x+k)>1成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=k•a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8).
(1)求实数k,a的值;
(2)若函数g(x)=
f(x)-1f(x)+1
,试判断函数g(x)的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•芜湖二模)给出以下五个命题:
①命题“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函数f(x)=k•cosx的图象经过点P(
π
3
,1),则函数图象上过点P的切线斜率等于-
3

③a=1是直线y=ax+1和直线y=(a-2)x-1垂直的充要条件.
④函数f(x)=(
1
2
)x-x
1
3
在区间(0,1)上存在零点.
⑤已知向量
a
=(1,-2)
与向量
b
=(1,m)
的夹角为锐角,那么实数m的取值范围是(-∞,
1
2

其中正确命题的序号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(已知函数f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,设t=logax+logxa.
(Ⅰ)当x∈(1,a)∪(a,+∞)时,试将f(x)表示成t的函数h(t),并探究函数h(t)是否有极值;
(Ⅱ)当k=4时,若对任意的x1∈(1,+∞),存在x2∈[1,2],使f(x1)≤g(x2),试求实数b的取值范围..

查看答案和解析>>

同步练习册答案