精英家教网 > 高中数学 > 题目详情

【题目】某校计划面向高一年级1200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类,自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.
(Ⅰ)分别计算抽取的样本中男生及女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类学生数;
(Ⅱ)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?

选择自然科学类

选择社会科学类

合计

男生

女生

合计

附: ,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】解:(Ⅰ)由条件知,抽取的男生为105人,女生为180﹣105=75人;
男生选择社会科学类的频率为 ,女生选择社会科学类的频率为
由题意,男生总数为 人,
女生总数为 人,
所以,估计选择社会科学的人数为 人;
(Ⅱ)根据统计数据,可得列联表如下:

选择自然科学类

选择社会科学类

合计

男生

60

45

105

女生

30

45

75

合计

90

90

180

计算观测值
所以,在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关.
【解析】(Ⅰ)计算抽取的男生与女生人数,根据分层抽样原理求出对应男生、女生人数;(Ⅱ)根据统计数据,填写列联表,计算观测值,比较临界值得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知从“神十”飞船带回的某种植物种子每粒成功发芽的概率都为 ,某植物研究所进行该种子的发芽实验,每次实验种一粒种子,每次实验结果相互独立,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值. (Ⅰ)求随机变量ξ的分布列及ξ的数学期望E(ξ);
(Ⅱ)记“不等式ξx2﹣ξx+1>0的解集是实数集R”为事件A,求事件A发生的概率P(A).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右焦点为F(1,0),且点(﹣1, )在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得 恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式anxn+an1xn1+…+a1x+a0 , 当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后进行求值.运行如图所示的程序框图,能求得多项式( )的值.

A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对函数f(x),如果存在x0≠0使得f(x0)=﹣f(﹣x0),则称(x0 , f(x0))与(﹣x0 , f(﹣x0))为函数图象的一组奇对称点.若f(x)=ex﹣a(e为自然数的底数)存在奇对称点,则实数a的取值范围是(
A.(﹣∞,1)
B.(1,+∞)
C.(e,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数
(1)求函数f(x)的定义域;
(2)若当x∈[0,1]时,不等式f(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+ |+|x﹣a|(a>0).
(1)证明:f(x)≥2;
(2)若f(3)<5,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费支出x与销售额y(单位:万元)之间有如下对应数据:

x

2

4

5

6

8

y

30

40

60

50

70


(1)求回归直线方程;
(2)试预测广告费支出为10万元时,销售额多大?
(3)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对值不超过5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,D是AC的中点,EF∥DB.

(1)已知AB=BC,AE=EC,求证:AC⊥FB;
(2)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.

查看答案和解析>>

同步练习册答案