精英家教网 > 高中数学 > 题目详情

【题目】已知关于x的不等式的解集为

(1)求a,b的值.

(2)当时,解关于x的不等式

【答案】(1) (2)见解析

【解析】

试题

(1)利用韦达定理可得

(2)结合(1)的结论分类讨论实数c的范围即可求得不等式的解集.

试题解析:

解:(1)因为不等式ax2-3x+2>0的解集为{x|x<1或x>b}

所以x1=1与x2b是方程ax2-3x+2=0的两个实数根

b>1且a>0

 解得

(2)不等式ax2-(acb)xbc<0,

x2-(2+c)x+2c<0,即(x-2)(xc)<0.

c>2时,不等式(x-2)(xc)<0的解集为{x|2<x<c};

c<2时,不等式(x-2)(xc)<0的解集为{x|c<x<2};

当c=2时,不等式(x-2)(x-c)<0的解集为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,的中点,将沿折起,使得.

(1)若的中点,求证:平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知长方形ABCD中,AB=2 ,AD= ,M为DC的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM (Ⅰ)求证:AD⊥BM
(Ⅱ)若点E是线段DB上的一动点,问点E在何位置时,二面角E﹣AM﹣D的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双曲线的虚轴长为,两条渐近线方程为.

(1)求双曲线的方程;

(2)双曲线上有两个点,直线的斜率之积为,判别是否为定值,;

(3)经过点的直线且与双曲线有两个交点,直线的倾斜角是,是否存在直线(其中)使得恒成立?(其中分别是点的距离)若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加一次抽奖.随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商场对前5天抽奖活动的人数进行统计,y表示第x天参加抽奖活动的人数,得到统计表如下:

x

1

2

3

4

5

y

50

60

70

80

100

经过进一步统计分析,发现yx具有线性相关关系.

1)若从这5天随机抽取两天,求至少有1天参加抽奖人数超过70的概率;

2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计该活动持续7天,共有多少名顾客参加抽奖?

参考公式及数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某学校高三年级共800名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于之间,将测量结果按如下方式分成八组:第一组;第二组;第八组.如图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.

1)估计这所学校高三年级全体男生身高在以上(含)的人数;

2)求第六组、第七组的频率并补充完整频率分布直方图;

3)若从身高属于第六组和第八组的所有男生中随机抽取两人,记他们的身高分别为,求满足的事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和是Sn , 且Sn+ an=1,数列{bn},{cn}满足bn=log3 ,cn= . (Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{cn}的前n项和为Tn , 若不等式Tn<m对任意的正整数n恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED是以BD为直角腰的直角梯形,DE=2BF=2,平面BFED⊥平面ABCD. (Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)在线段EF上是否存在一点P,使得平面PAB与平面ADE所成的锐二面角的余弦值为 .若存在,求出点P的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a,b,c,d满足 =1,其中e是自然对数的底数,则(a﹣c)2+(b﹣d)2的最小值为(
A.4
B.8
C.12
D.18

查看答案和解析>>

同步练习册答案