精英家教网 > 高中数学 > 题目详情
16.己知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-ax,x>0}\\{{2}^{x}-1,x≤0}\end{array}\right.$,若不等式f(x)+1≥0在x∈R上恒成立,则实数a的取值范围为(  )
A.(-∞,0]B.[-2,2]C.(-∞,2]D.[0,2]

分析 由f(x)的解析式可得当x≤0时,2x-1≥-1,结合指数函数的值域即可判断;再由x>0时,x2-ax≥-1,结合参数分离和基本不等式即可得到a的范围.

解答 解:由f(x)≥-1在R上恒成立,可得
当x≤0时,2x-1≥-1,即2x≥0显然成立;
又x>0时,x2-ax≥-1,即为a≤$\frac{{x}^{2}+1}{x}$=x+$\frac{1}{x}$,
由x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$=2,
当且仅当x=1时取得最小值2,可得a≤2.
综上可得a≤2.
故选:C.

点评 本题考查函数恒成立问题的解法,注意运用指数函数的值域和二次不等式的恒成立问题的解法,运用参数分离和基本不等式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.一个棱长为2cm的正方体的顶点都在球面上,则该球的表面积是12πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a<0,-1<b<0,则下列不等关系正确的是(  )
A.ab>a>ab2B.ab2>ab>aC.ab>ab2>aD.a>ab2>ab

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,PA⊥平面ABC,PA=$\sqrt{2}$,AB=1,BC=$\sqrt{3}$,AC=2.
(1)求证:BC⊥平面PAB;
(2)求二面角B-PA-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,在直角梯形ABCD中,AD∥BC,∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图2中△A1BE的位置,得到四棱锥A1-BCDE.(Ⅰ) 证明:CD⊥平面A1OC;
(Ⅱ) 若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(其中t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ(4cosθ+3sinθ)-m=0(其中m为常数).
(1)若直线l与曲线C恰好有一个公共点,求实数m的值;
(2)若m=4,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,以AB为直径的圆O与以N为圆心,半径为1的圆一个交点为Q,延长AB至点P,过点P作两圆的切线,分别切于M,N两点,已知AB=4.
(1)证明:AN=PN;
(2)求QN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设x>0,f(x)=eax-x
(I)讨论f(x)的单调性;
(Ⅱ)当a=1时,证明:f(x)>$\frac{{x}^{2}}{2}$+1;
(Ⅲ)若ex=1+x+$\frac{1}{2}$x2ey,证明:0<y<x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆的两焦点为F1(-1,0),F2(1,0),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|.
(1)求此椭圆方程;
(2)若点P 是椭圆上的点且∠F1PF2=60°,求△F1PF2的面积.

查看答案和解析>>

同步练习册答案