【题目】已知{an}是各项都为正数的等比数列,其前n项和为Sn , 且S2=3,S4=15.
(1)求数列{an}的通项公式;
(2)若数列{bn}是等差数列,且b3=a3 , b5=a5 , 试求数列{bn}的前n项和Mn .
【答案】
(1)解:设等比数列{an}的公比为q,由题意分析知q≠1.
由S2=3,S4=15得: ,
得1+q2=5,得q2=4,由题意q>0,所以q=2.
将q=2代入(1)式得a1=1,
所以 .
(2)解:设数列{bn}的公差为d,
∵ ,
又{bn}为等差数列,∴b5=b3+(5﹣3)d,
即16=4+2d,解得d=6,
又由b3=b1+(3﹣1)d,得b1=﹣8
∴
=3n2﹣11n.
【解析】(1)设等比数列{an}的公比为q,由题意分析知q≠1.运用等比数列的求和公式,解方程可得首项与公比,由等比数列的通项公式即可得到所求;(2)设数列{bn}的公差为d,运用等差数列的通项公式可得公差和首项,运用等差数列的求和公式,进而得到所求和.
【考点精析】利用等比数列的通项公式(及其变式)和数列的前n项和对题目进行判断即可得到答案,需要熟知通项公式:;数列{an}的前n项和sn与通项an的关系.
科目:高中数学 来源: 题型:
【题目】【2017福建三明5月质检】如图,在四棱锥中,侧面底面,底面是平行四边形, , , , 为的中点,点在线段上.
(Ⅰ)求证: ;
(Ⅱ)试确定点的位置,使得直线与平面所成的角和直线与平面所成的角相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是
A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个化肥厂生产甲种混合肥料1车皮、乙种混合肥料1车皮所需要的主要原料如表:
原料 | 磷酸盐(单位:吨) | 硝酸盐(单位:吨) |
甲 | 4 | 20 |
乙 | 2 | 20 |
现库存磷酸盐8吨、硝酸盐60吨,计划在此基础上生产若干车皮的甲、乙两种混合肥料.
(1)设x,y分别表示计划生产甲、乙两种肥料的车皮数,试列出x,y满足的数学关系式,并画出相应的平面区域;
(2)若生产1车皮甲种肥料,利润为3万元;生产1车皮乙种肥料,利润为2万元.那么分别生产甲、乙两种肥料多少车皮,能够产生最大利润?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=3ax2﹣2(a+b)x+b,(0≤x≤1)其中a>0,b为任意常数.
(I)若b= ,f(x)=|x﹣ |在x∈[0,1]有两个不同的解,求实数a的范围.
(II)当|f(0)|≤2,|f(1)|≤2时,求|f(x)|的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com