精英家教网 > 高中数学 > 题目详情
精英家教网设全集U=R,A={x|
x
x-2
<0},B={x|2x<2},则如图中阴影部分表示的集合为(  )
A、{x|x≥1}
B、{x|1≤x<2}
C、{x|0<x≤1}
D、{x|x≤1}
分析:根据图象可知阴影部分表示的集合为A∩(∁UB),然后根据集合的基本运算即可得到结论.
解答:解:由Venn图可知阴影部分表示的集合为A∩(∁UB),
∵A={x|
x
x-2
<0}={x|0<x<2},B={x|2x<2}={x|x<1},
∴A∩(∁UB)={x|1≤x<2},
故选:B.
点评:本题主要考查集合的基本运算,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集U=R,A={x|
x-2
x+1
<0}
,B={x|sin x≥
3
2
},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,A={x|
x-a
x+b
≥0}
,?UA=(-1,-a),则a+b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,A={x|x<2},B={x||x-1|≤3},则(?UA)∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,A={x|x2+x-20<0},B={x||2x+5|>7},C={x|x2-3mx+2m2<0}.
(1)若C⊆(A∩B),求m的取值范围;
(2)若(CUA)∩(CUB)⊆C,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,A={x|ax+1=0},B={1,2},若A∩(?UB)=?,则实数a的取值集合是(  )
A、{0}
B、?
C、{-1,-
1
2
}
D、{-1,-
1
2
,0}

查看答案和解析>>

同步练习册答案