精英家教网 > 高中数学 > 题目详情

【题目】筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,如左下图.假定在水流量稳定的情况下,半径为3m的筒车上的每一个盛水桶都按逆时针方向作角速度为rad/min的匀速圆周运动,平面示意图如右下图,己知筒车中心O到水面BC的距离为2m,初始时刻其中一个盛水筒位于点P0处,且∠P0OAOA//BC),则8min后该盛水筒到水面的距离为____m

【答案】

【解析】

由题意可得转动8分钟之后盛水桶所转过的角度,从而确定出其所在的位置,结合三角函数的有关知识,求得点P到水面的距离.

根据题意可得,8分钟后盛水桶所转过的角为

而除去一圈,

所以转8分钟之后P0所转到的位置P满足

所以点P到水面的距离

故答案是:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数,α为直线的倾斜角).以平面直角坐标系xOy极点,x的正半轴为极轴,取相同的长度单位,建立极坐标系.圆的极坐标方程为ρ=2cosθ,设直线与圆交于A,B两点. (Ⅰ)求圆C的直角坐标方程与α的取值范围;
(Ⅱ)若点P的坐标为(﹣1,0),求 + 取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是( )

A. 如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行

B. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

C. 垂直于同一条直线的两条直线相互垂直

D. 若两条直线与第三条直线所成的角相等,则这两条直线互相平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为,点在椭圆上,且满足,当变化时,给出下列三个命题:

①点的轨迹关于轴对称;②的最小值为2;

③存在使得椭圆上满足条件的点仅有两个,

其中,所有正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆经过三点,是线段上的动点,是过点且互相垂直的两条直线,其中轴于点交圆两点.

(1)若,求直线的方程;

(2)若是使恒成立的最小正整数,求三角形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数且函数图象上点处的切线斜率为.

(1)试用含有的式子表示,并讨论的单调性;

(2)对于函数图象上的不同两点如果在函数图象上存在点使得点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若f(-1)=f(1),求a,并直接写出函数的单调增区间;

(2)当a时,是否存在实数x,使得=一?若存在,试确定这样的实数x的个数;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,“cosA>cosB”是“sinA<sinB”的 (  )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆轴交于两点(的上方),直线

(1)当时,求直线被圆截得的弦长;

(2)若,点为直线上一动点(不在轴上),直线的斜率分别为,直线与圆的另一交点分别

①问是否存在实数,使得成立?若存在,求出的值;若不存在,说明理由;

②证明:直线经过定点,并求出定点坐标.

查看答案和解析>>

同步练习册答案