A. | $-\frac{1}{3}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{1}{4}$ | D. | $\frac{1}{2}$ |
分析 根据题意画出图形,结合图形,利用平面向量的线性运算性质,用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示出$\overrightarrow{CD}$、$\overrightarrow{CE}$,求出m、n的值即可.
解答 解:如图所示,△ABC中,D为边BC上靠近B点的三等分点,E为线段AD的中点,
∴$\overrightarrow{CB}$=$\overrightarrow{AB}$-$\overrightarrow{AC}$,
∴$\overrightarrow{CD}$=$\frac{2}{3}$$\overrightarrow{CB}$=$\frac{2}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$;
∴$\overrightarrow{CE}$=$\frac{1}{2}$($\overrightarrow{CD}$+$\overrightarrow{CA}$)
=$\frac{1}{2}$$\overrightarrow{CD}$-$\frac{1}{2}$$\overrightarrow{AC}$
=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$-$\frac{1}{2}$$\overrightarrow{AC}$
=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{5}{6}$$\overrightarrow{AC}$;
又$\overrightarrow{CE}=m\overrightarrow{AB}+n\overrightarrow{AC}$,
∴m=$\frac{1}{3}$,n=-$\frac{5}{6}$;
∴m+n=-$\frac{1}{2}$.
故选:B.
点评 本题考查了平面向量的线性运算性质的应用问题,也考查了推理与运算能力,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 72π | B. | 144π | C. | 288π | D. | 576π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com