精英家教网 > 高中数学 > 题目详情
若等差数列{an}的首项为a1=(m∈N*),公差是()n展开式中的常数项,其中n为7777-15除以19的余数,求数列{an}的通项公式.

思路解析:先由得出关于m的不等式组,从而求出整数m的值;求出7777-15除以19的余数,从而得出n的值;利用二项式定理,求出二项展开式中的常数项,便得到了公差的取值,由以上的求解,便可得出数列{an}的通项公式.

解:由题意,得.∵m∈N*,∴m=2.

∴a1==120-20=100.

而7777-15=(1+19×4)77-15

=(19×4)+(19×4)2+…+(19×4)77-15

=(19×4)[(19×4)+…+(19×4)76]+1-15

=(19×4)[(19×4)+…+(19×4)76]-19+5

∴7777-15除以19余5,即n=5.

∴Tr+1=.

令5r-15=0,得r=3.

则T4=·(-1)3=-4.所以d=T4=-4.

所以an=a1+(n-1)d=100+(n-1)·(-4)=104-4n.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、若等差数列{an}的前5项和S5=30,且a2=7,则a7=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若等差数列{an}的公差为d,前n项的和为Sn,则数列{
Sn
n
}
为等差数列,公差为
d
2
.类似地,若各项均为正数的等比数列{bn}的公比为q,前n项的积为Tn,则数列{
nTn
}
为等比数列,公比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sin2x,若等差数列{an}的第5项的值为f′(
π6
),则a1a2+a2a9+a9a8+a8a1=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)若等差数列{an}的前n项和为Sn(n∈N*),若a2:a3=5:2,则S3:S5=
3:2
3:2

查看答案和解析>>

科目:高中数学 来源: 题型:

若等差数列{an}的项数m为奇数,且a1+a3+a5+…+am=52,a2+a4+…+am-1=39则m=(  )

查看答案和解析>>

同步练习册答案