精英家教网 > 高中数学 > 题目详情
已知f(x)  =  
 (2a-1) x+4ax<1
  logax x≥1
是(-∞,+∞)上的减函数,那么a的取值范围是
[
1
6
1
2
)
[
1
6
1
2
)
分析:由f(x)在R上单调减,确定a,以及2a-1的范围,再根据单调减确定在分段点x=1处两个值的大小,从而解决问题.
解答:解:依题意,有0<a<1且2a-1<0,
解得0<a<
1
2

又当x<1时,(2a-1)x+4a>6a-1,
当x>1时,logax<0,
因为f(x)在R上单调递减,所以6a-1≥0解得a≥
1
6

综上:a∈[
1
6
1
2
)

故答案为:[
1
6
1
2
)
点评:本题考查分段函数,函数单调性的应用,考查计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)在(a,b)上的导函数为f'(x),f'(x)在(a,b)上的导函数为f''(x),若在(a,b)上,f''(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2

(Ⅰ)若f(x)为区间(-1,3)上的“凸函数”,则实数m=
 

(Ⅱ)若当实数m满足|m|≤2时,函数f(x)在(a,b)上总为“凸函数”,则b-a的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2x+1
x+a
,其中a≠
1
2
.求其反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(3a-2)x-2a,x≤1
logax,,x>1
在R上为增函数,那么a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
2
3
x(x2-3ax-
9
2
)(a∈R)

(I)若过函数f(x)图象上一点P(1,t)的切线与直线x-2y+b=0垂直,求t的值;
(II)若函数f(x)在(-1,1)内是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
f(x-1),x≥0
x2,x<0
,则f(2)+f(-2)的值为(  )

查看答案和解析>>

同步练习册答案