【题目】某中学调查了某班全部名同学参加学校社团的情况,数据如下表:(单位:人)
参加书法社 | 未参加书法社 | |
参加辩论社 | ||
未参加辩论社 |
(1)从该班随机选名同学,求该同学至少参加一个社团的概率;
(2)在既参加书法社又参加辩论社的名同学中,有名男同学,名女同学.现从这名同学中男女姓各随机选人(每人被选到的可能性相同).
(i)列举出所有可能结果;
(ii)设为事件“被选中且未被选中”,求事件发生的概率.
科目:高中数学 来源: 题型:
【题目】高铁是我国国家名片之一,高铁的修建凝聚着中国人的智慧与汗水.如图所示,B、E、F为山脚两侧共线的三点,在山顶A处测得这三点的俯角分别为、、,计划沿直线BF开通穿山隧道,现已测得BC、DE、EF三段线段的长度分别为3、1、2.
(1)求出线段AE的长度;
(2)求出隧道CD的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义上的函数,若满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.
(1)设,判断在上是否有界函数,若是,请说明理由,并写出的所有上界的值的集合,若不是,也请说明理由;
(2)若函数在上是以3为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为;
当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点,则点的“伴随点”是点A
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是_____________(写出所有真命题的序列).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.)
网络 | 月租费 | 本地话费 | 长途话费 |
甲:联通 | 元 | 元/分 | 元/秒 |
乙:移动“神州行” | 无 | 元/分 | 元/秒 |
若王先生每月拨打本地电话的时间是拨打长途电话时间的倍,若要用联通应最少打多长时间的长途电话才合算.( )
A.秒B.秒C.秒D.秒
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,且,且,函数.
(1)设,,若是奇函数,求的值;
(2)设,,判断函数在上的单调性并加以证明;
(3)设,,,函数的图象是否关于某垂直于轴的直线对称?如果是,求出该对称轴,如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合是满足下列性质的函数的全体,存在实数,对于定义域内的任意均有成立,称数对为函数的“伴随数对”.
(1)判断是否属于集合,并说明理由;
(2)若函数,求满足条件的函数的所有“伴随数对”;
(3)若,都是函数的“伴随数对”,当时,;当时,.求当时,函数的零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且点在函数的图像上;
(1)求数列的通项公式;
(2)设数列满足:,,求的通项公式;
(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com