精英家教网 > 高中数学 > 题目详情

【题目】某中学调查了某班全部名同学参加学校社团的情况,数据如下表:(单位:人)

参加书法社

未参加书法社

参加辩论社

未参加辩论社

1)从该班随机选名同学,求该同学至少参加一个社团的概率;

2)在既参加书法社又参加辩论社的名同学中,有名男同学,名女同学.现从这名同学中男女姓各随机选人(每人被选到的可能性相同).

(i)列举出所有可能结果;

(ii)设为事件“被选中且未被选中”,求事件发生的概率.

【答案】1;(2)(i)见解析;(ii

【解析】

1)根据调查数据表,得到既未参加书法社又未参加辩论社的人数,从而得到至少参加一个社团的人数,得到该同学至少参加一个社团的概率;(2)(i)根据题意,列出所有可能结果,(ii)得到事件所包含的情况,根据古典概型公式,得到概率.

1)由调查数据表可知,既未参加书法社又未参加辩论社的有人,

故至少参加一个社团的共有(人),

所以从该班随机选名同学,

该同学至少参加上述一个社团的概率为.

2)(i)从这名男同学和名女同学中各随机选人,

全部可能的结果组成的基本事

件有:

,共个.

ii)事件所包含的基本事件有:个,

因此.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】高铁是我国国家名片之一,高铁的修建凝聚着中国人的智慧与汗水.如图所示,BEF为山脚两侧共线的三点,在山顶A处测得这三点的俯角分别为,计划沿直线BF开通穿山隧道,现已测得BCDEEF三段线段的长度分别为312.

(1)求出线段AE的长度;

(2)求出隧道CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义上的函数,若满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

(1)设,判断上是否有界函数,若是,请说明理由,并写出的所有上界的值的集合,若不是,也请说明理由;

(2)若函数上是以3为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线与圆相交于两点,的面积达到最大时,________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,当P(xy)不是原点时,定义P伴随点

P是原点时,定义P伴随点为它自身,平面曲线C上所有点的伴随点所构成的曲线定义为曲线C伴随曲线”.现有下列命题:

若点A伴随点是点,则点伴随点是点A

单位圆的伴随曲线是它自身;

若曲线C关于x轴对称,则其伴随曲线关于y轴对称;

一条直线的伴随曲线是一条直线.

其中的真命题是_____________(写出所有真命题的序列).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的网,经调查其收费标准见下表:(注:本地电话费以分为计费单位,长途话费以秒为计费单位.

网络

月租费

本地话费

长途话费

甲:联通

/

/

乙:移动“神州行”

/

/

若王先生每月拨打本地电话的时间是拨打长途电话时间的倍,若要用联通应最少打多长时间的长途电话才合算.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)设,若是奇函数,求的值;

2)设,判断函数上的单调性并加以证明;

3)设,函数的图象是否关于某垂直于轴的直线对称?如果是,求出该对称轴,如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合是满足下列性质的函数的全体,存在实数,对于定义域内的任意均有成立,称数对为函数的“伴随数对”.

(1)判断是否属于集合,并说明理由;

(2)若函数,求满足条件的函数的所有“伴随数对”;

(3)若,都是函数的“伴随数对”,当时,;当时,.求当时,函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且点在函数的图像上;

1)求数列的通项公式;

2)设数列满足:,求的通项公式;

3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;

查看答案和解析>>

同步练习册答案